Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 123: 325-334, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33454386

ABSTRACT

Polyethylene glycol (PEG) modification is one of the promising approaches to overcome both mucus and alveolar macrophage uptake barriers in the deep lung for sustained therapy of pulmonary diseases such as asthma. To investigate the feasibility of using PEG-modified microspheres to bypass both barriers, we prepared a collection of polyethylene glycol-distearoyl glycero-phosphoethanolamine (PEG-DSPE)-modified poly (lactide-co-glycolide) (PLGA) microspheres bearing specific PEG molecular weights (0.75, 2, 5, and 10 kDa) and PEG-DSPE/PLGA molar ratios (0.25:1 and 1:1). Drug release, mucus penetration, and macrophage uptake were evaluated in vitro, and the corresponding in vivo activities of microspheres in rats were investigated. It was found that the PEG2000-DSPE/PLGA 1:1 group showed enhanced mucus permeability and reduced macrophage uptake in vitro compared to the PEG2000-DSPE/PLGA 0.25:1 group. At high PEG molar ratios, only the PEG 2000-based group showed significantly prolonged lung retention in vivo compared to the control group. The systemic exposure of the PEG2000-DSPE/PLGA 1:1 group was significantly lower than that of the PEG2000-DSPE/PLGA 0.25:1 group (39% of AUC reduction). Additionally, when using the same molar ratio of 1:1, the PEG 2000 group significantly lowered the systemic drug exposure compared to that of the PEG 5000 and 10000 groups (48% and 33% of AUC reduction, respectively), thus making it a promising sustained lung delivery candidate for pulmonary disease treatment.


Subject(s)
Nanoparticles , Animals , Drug Liberation , Lung , Microspheres , Polyethylene Glycols , Rats
2.
Eur J Pharm Biopharm ; 143: 70-79, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31446045

ABSTRACT

Controlled drug delivery to the lungs is promising with plentiful advantages over current rapid release products. However, alveolar macrophage clearance has severely hindered the application of inhaled controlled release preparations. The objective of our study was to explore the feasibility to decorate poly(lactide-co-glycolide) (PLGA) microparticles with endogenous phospholipids found in the deep lungs, thus, to regulate the interplay with alveolar macrophages. The influence of the phospholipid amount and type on macrophage uptake of PLGA microparticles was investigated systemically under both in vitro (RAW264.7 and NR8383) and in vivo conditions. The uptake rate (k) by macrophages, in vivo elimination rate from the bronchoalveolar lavage fluid (k') and elimination rate from the whole lung (k″) were used as parameters for evaluation. Our data showed that a modification with dipalmitoyl phosphatidylcholine (DPPC) enhanced the macrophage phagocytosis significantly over the unmodified counterparts. Thereafter, using the same modification ratio, remarkable enhancement of macrophage uptake was found in the presence of different types of other phospholipids, especially with distearoyl phosphatidylethanolamine (DSPE). When replaced by a poly(ethylene glycol)-conjugated version of DSPE the uptake of the modified PLGA microparticles was reduced by ~200%. Meanwhile, the drug content in the lung tissue was improved by 3-fold (area under the curve value). Finally, it was possible to establish a correlation between in vitro phagocytosis and in vivo lung elimination rate for the investigated formulations. Overall, our study demonstrated that phospholipids play an important role in modulating the clearance of microparticle-based drug delivery vehicles, which gives a meaningful insight into the development of prolonged drug release system for inhalation.


Subject(s)
Macrophages, Alveolar/metabolism , Phospholipids/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Administration, Inhalation , Animals , Cell Line , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Lung/metabolism , Mice , Phagocytosis/drug effects , Phosphatidylglycerols/chemistry , Polyethylene Glycols/chemistry , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...