Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38530298

ABSTRACT

Objective. Accurate and reproducible tumor delineation on positron emission tomography (PET) images is required to validate predictive and prognostic models based on PET radiomic features. Manual segmentation of tumors is time-consuming whereas semi-automatic methods are easily implementable and inexpensive. This study assessed the reliability of semi-automatic segmentation methods over manual segmentation for tumor delineation in head and neck squamous cell carcinoma (HNSCC) PET images.Approach. We employed manual and six semi-automatic segmentation methods (just enough interaction (JEI), watershed, grow from seeds (GfS), flood filling (FF), 30% SUVmax and 40%SUVmax threshold) using 3D slicer software to extract 128 radiomic features from FDG-PET images of 100 HNSCC patients independently by three operators. We assessed the distributional properties of all features and considered 92 log-transformed features for subsequent analysis. For each paired comparison of a feature, we fitted a separate linear mixed effect model using the method (two levels; manual versus one semi-automatic method) as a fixed effect and the subject and the operator as the random effects. We estimated different statistics-the intraclass correlation coefficient agreement (aICC), limits of agreement (LoA), total deviation index (TDI), coverage probability (CP) and coefficient of individual agreement (CIA)-to evaluate the agreement between the manual and semi-automatic methods.Main results. Accounting for all statistics across 92 features, the JEI method consistently demonstrated acceptable agreement with the manual method, with median values of aICC = 0.86, TDI = 0.94, CP = 0.66, and CIA = 0.91.Significance. This study demonstrated that JEI method is a reliable semi-automatic method for tumor delineation on HNSCC PET images.


Subject(s)
Head and Neck Neoplasms , Lung Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Reproducibility of Results , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Head and Neck Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...