Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(8): e202115173, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34881491

ABSTRACT

Employing halenium affinity (HalA) as a guiding tool, the weak nucleophilic character of alkyl ketones was modulated by the templating effect of a tethered 2-tetrahydropyranyl(THP)-protected alcohol towards realizing a bromenium ion initiated spiroketalization cascade. Addition of ethanol aided an early termination of the cascade by scavenging the THP group after the halofunctionalization stage, furnishing monobromospiroketals. Alternatively, exclusion of ethanol from the reaction mixture biased the transient oxocarbenium towards α-deprotonation that precedes a second bromofunctionalization event thus, furnishing dibrominated spiroketals. The regio- and stereoselectivity exploited in the current methodology provides a novel and rapid access to the dibrominated spiroketal motifs exhibited by several natural products.


Subject(s)
Bromine/chemistry , Furans/chemistry , Spiro Compounds/chemistry , Ions/chemistry , Molecular Structure , Stereoisomerism
2.
J Phys Chem B ; 125(45): 12486-12499, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34752096

ABSTRACT

Several fluorene derivatives exhibit excited-state reactivity and relaxation dynamics that remain to be understood fully. We report here the spectral relaxation dynamics of two fluorene derivatives to evaluate the role of structural modification in the intramolecular relaxation dynamics and intermolecular interactions that characterize this family of chromophores. We have examined the time-resolved spectral relaxation dynamics of two compounds, NCy-FR0 and MK-FR0, in protic and aprotic solvents using steady-state and time-resolved emission spectroscopy and quantum chemical computations. Both compounds exhibit spectral relaxation characteristics similar to those seen in FR0, indicating that hydrogen bonding interactions between the chromophore and solvent protons play a significant role in determining the relaxation pathways available to three excited electronic states.


Subject(s)
Fluorenes , Hydrogen Bonding , Solutions , Solvents , Spectrometry, Fluorescence
3.
J Phys Chem B ; 125(44): 12242-12253, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34726920

ABSTRACT

Substituted fluorene structures have demonstrated unusual photochemical properties. Previous reports on the substituted fluorene Schiff base FR0-SB demonstrated super photobase behavior with a ΔpKb of ∼14 upon photoexcitation. In an effort to understand the basis for this unusual behavior, we have examined the electronic structure and relaxation dynamics of the structural precursor of FR0-SB, the aldehyde FR0, in protic and aprotic solvents using time-resolved fluorescence spectroscopy and quantum chemical calculations. The calculations show three excited singlet states in relatively close energetic proximity. The spectroscopic data are consistent with relaxation dynamics from these electronic states that depend on the presence and concentration of solvent hydroxyl functionality. These results underscore the central role of solvent hydrogen bonding to the FR0 aldehyde oxygen in mediating the relaxation dynamics within this molecule.


Subject(s)
Fluorenes , Schiff Bases , Hydrogen Bonding , Solvents , Spectrometry, Fluorescence
4.
J Chem Phys ; 153(22): 224301, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317305

ABSTRACT

Two-photon excitation (TPE) is an attractive means for controlling chemistry in both space and time. Since isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are allowed to reach the same excited state, it is usually assumed that they produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62% increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for TPE as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.

5.
Phys Chem Chem Phys ; 22(35): 19613-19622, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32936138

ABSTRACT

The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0-SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative -OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is "shared" by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0-SB* imine lone pair stabilized by the solvent environment.

6.
J Phys Chem B ; 123(40): 8448-8456, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31532676

ABSTRACT

We report on the motional and proton transfer dynamics of the super photobase FR0-SB in the series of normal alcohols C1 (methanol) through C8 (n-octanol) and ethylene glycol. Steady-state and time-resolved fluorescence data reveal that the proton abstraction dynamics of excited FR0-SB depend on the identity of the solvent and that the transfer of the proton from solvent to FR0-SB*, forming FR0-HSB+*, fundamentally alters the nature of interactions between the excited molecule and its surroundings. In its unprotonated state, solvent interactions with FR0-SB* are consistent with slip limit behavior, and in its protonated form, intermolecular interactions are consistent with a much stronger interaction of FR0-HSB+* with the deprotonated solvent RO-. We understand the excited-state population dynamics in the context of a kinetic model involving a transition state wherein FR0-HSB+* is still bound to the negatively charged alkoxide, prior to solvation of the two charged species. Data acquired in ethylene glycol confirm the hypothesis that the rotational diffusion dynamics of FR0-SB* are largely mediated by solvent viscosity while proton transfer dynamics are mediated by the lifetime of the transition state. Taken collectively, our results demonstrate that FR0-SB* extracts solvent protons efficiently and in a predictable manner, consistent with a ca. 3-fold increase in dipole moment upon photoexcitation as determined by ab initio calculations based on the equation-of-motion coupled-cluster theory.


Subject(s)
Alcohols/chemistry , Protons , Solvents/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...