Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 48(4): 584-593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219005

ABSTRACT

OBJECTIVES: We aimed to discover CpG sites with differential DNA methylation in peripheral blood leukocytes associated with body mass index (BMI) in pregnancy and gestational weight gain (GWG) in women of European and South Asian ancestry. Furthermore, we aimed to investigate how the identified sites were associated with methylation quantitative trait loci, gene ontology, and cardiometabolic parameters. METHODS: In the Epigenetics in pregnancy (EPIPREG) sample we quantified maternal DNA methylation in peripheral blood leukocytes in gestational week 28 with Illumina's MethylationEPIC BeadChip. In women with European (n = 303) and South Asian (n = 164) ancestry, we performed an epigenome-wide association study of BMI in gestational week 28 and GWG between gestational weeks 15 and 28 using a meta-analysis approach. Replication was performed in the Norwegian Mother, Father, and Child Cohort Study, the Study of Assisted Reproductive Technologies (MoBa-START) (n = 877, mainly European/Norwegian). RESULTS: We identified one CpG site significantly associated with GWG (p 5.8 × 10-8) and five CpG sites associated with BMI at gestational week 28 (p from 4.0 × 10-8 to 2.1 × 10-10). Of these, we were able to replicate three in MoBa-START; cg02786370, cg19758958 and cg10472537. Two sites are located in genes previously associated with blood pressure and BMI. DNA methylation at the three replicated CpG sites were associated with levels of blood pressure, lipids and glucose in EPIPREG (p from 1.2 × 10-8 to 0.04). CONCLUSIONS: We identified five CpG sites associated with BMI at gestational week 28, and one with GWG. Three of the sites were replicated in an independent cohort. Several genetic variants were associated with DNA methylation at cg02786379 and cg16733643 suggesting a genetic component influencing differential methylation. The identified CpG sites were associated with cardiometabolic traits. GOV REGISTRATION NO: Not applicable.


Subject(s)
Cardiovascular Diseases , Gestational Weight Gain , Female , Humans , Pregnancy , Body Mass Index , Cardiovascular Diseases/genetics , Cohort Studies , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenome , European People , Genome-Wide Association Study , Gestational Weight Gain/genetics , Leukocytes , South Asian People , Meta-Analysis as Topic
2.
J Intern Med ; 286(2): 192-206, 2019 08.
Article in English | MEDLINE | ID: mdl-30919529

ABSTRACT

OBJECTIVE: Gestational diabetes mellitus (GDM) is a transient form of diabetes characterized by impaired insulin secretion and action during pregnancy. Population-based differences in prevalence exist which could be explained by phenotypic and genetic differences. The aim of this study was to examine these differences in pregnant women from Punjab, India and Scandinavia. METHODS: Eighty-five GDM/T2D loci in European and/or Indian populations from previous studies were assessed for association with GDM based on Swedish GDM criteria in 4018 Punjabi Indian and 507 Swedish pregnant women. Selected loci were replicated in Scandinavian cohorts, Radiel (N = 398, Finnish) and STORK/STORK-G (N = 780, Norwegian). RESULTS: Punjabi Indian women had higher GDM prevalence, lower insulin secretion and better insulin sensitivity than Swedish women. There were significant frequency differences of GDM/T2D risk alleles between both populations. rs7178572 at HMG20A, previously associated with GDM in South Indian and European women, was replicated in North Indian women. The T2D risk SNP rs11605924 in the CRY2 gene was associated with increased GDM risk in Scandinavian but decreased GDM risk in Punjabi Indian women. No other overlap was seen between GDM loci in both populations. CONCLUSIONS: Gestational diabetes mellitus is more common in Indian than Swedish women, which partially can be attributed to differences in insulin secretion and action. There was marked heterogeneity in the GDM phenotypes between the populations which could only partially be explained by genetic differences.


Subject(s)
Cryptochromes/genetics , Diabetes, Gestational/epidemiology , Diabetes, Gestational/genetics , High Mobility Group Proteins/genetics , Adult , Alleles , Female , Genetic Predisposition to Disease , Genotype , Humans , India/epidemiology , Insulin Resistance , Phenotype , Polymorphism, Single Nucleotide , Pregnancy , Prevalence , Scandinavian and Nordic Countries/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...