Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 900922, 2022.
Article in English | MEDLINE | ID: mdl-35722346

ABSTRACT

The bacille Calmette-Guèrin (BCG) vaccine has been used for a century; nonetheless, tuberculosis (TB) remains one of the deadliest diseases in the world. Thus, new approaches to developing a new, more efficient vaccine are desirable. Mucosal vaccines are of particular interest, considering that Mycobacterium tuberculosis first enters the body through the mucosal membranes. We have previously demonstrated the immunogenicity of a recombinant Lactiplantibacillus plantarum delivery vector with TB hybrid antigen Ag85B-ESAT-6 anchored to the cell membrane. The goal of the present study was to analyze the impact of antigen localization in the immune response. Thus, we assessed two novel vaccine candidates, with the TB antigen either non-covalently anchored to the cell wall (LysMAgE6) or located intracellularly (CytAgE6). In addition, we compared two expression systems, using an inducible (LipoAgE6) or a constitutive promoter (cLipoAgE6) for expression of covalently anchored antigen to the cell membrane. Following administration to mice, antigen-specific CD4+ T-cell proliferation and IFN-γ and IL-17A secretion were analyzed for lung cell and splenocyte populations. Generally, the immune response in lung cells was stronger compared to splenocytes. The analyses showed that the type of expression system did not significantly affect the immunogenicity, while various antigen localizations resulted in markedly different responses. The immune response was considerably stronger for the surface-displaying candidate strains compared to the candidate with an intracellular antigen. These findings emphasize the significance of antigen exposure and further support the potential of L. plantarum as a mucosal vaccine delivery vehicle in the fight against TB.

2.
J Agric Food Chem ; 64(1): 146-50, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26716467

ABSTRACT

The blood-brain barrier (BBB) remains a significant hurdle for treatment of central nervous system (CNS) and mental health disorders. A prolyl endopeptidase (PEP) inhibitory peptide with the amino acid sequence proline-proline-leucine (PPL) was chemically synthesized labeled with 5-FAM and assessed using a transcytosis assay for its ability to cross the BBB. Transport of this peptide across the BBB was determined using an in vitro model of the human BBB, which utilizes the human cerebral microvascular endothelial cell line (hCMEC/D3). Uptake and transport of 5-FAM-PPL across the hCMEC/D3 cell model was determined using confocal microscopy and mass spectrometry. This is an important parameter in determining whether peptides may reach the target organ (i.e., the brain and central nervous system).This work assessed, for the first time, the ability of a food-derived PEP inhibitory peptide to cross the BBB without the use of animal models.


Subject(s)
Blood-Brain Barrier/enzymology , Endothelium, Vascular/metabolism , Enzyme Inhibitors/metabolism , Peptides/metabolism , Serine Endopeptidases/metabolism , Biological Transport , Blood-Brain Barrier/metabolism , Cell Line , Endothelium, Vascular/enzymology , Humans , Prolyl Oligopeptidases
SELECTION OF CITATIONS
SEARCH DETAIL
...