Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Alcohol Clin Exp Res ; 45(2): 480-489, 2021 02.
Article in English | MEDLINE | ID: mdl-33351976

ABSTRACT

BACKGROUND: Stress triggers alcohol use and relapse to drinking, with different effects by sex. Women are more susceptible to stress-related alcohol misuse, and most stressors in rodents produce sexually divergent effects. Female rodents are particularly sensitive to the stress produced by solitary housing, yet the impact of housing conditions on the establishment, escalation, and post-abstinence potentiation of intermittent access alcohol drinking in male and female rats, and the interaction of these factors with stress history are not well described. METHODS: Male (n = 62) and female (n = 64) Wistar rats were housed individually or in pairs separated by a perforated divider. Rats were exposed to light-cued footshock stress (stress history), or cues alone (control), once daily for 3 days, followed by 8 weeks' drinking under intermittent access to a 2-bottle choice (IA2BC), with 20% alcohol (v/v in water) available in addition to water for 24 hours on alternate days. After a 2-week forced abstinence, anxiety-like behavior was assessed via defensive withdrawal testing; then, IA2BC alcohol access was renewed for 2 weeks to model relapse-like behavior. RESULTS: Pair-housed female rats did not increase their alcohol intake across the 8-week drinking period, unlike all other groups, and stress history did not significantly change alcohol consumption. After abstinence, anxiety-like behavior was greatest in pair-housed stress history males, whereas alcohol intake was significantly elevated only in female rats, particularly those in solitary housing. CONCLUSIONS: Together, these findings suggest that paired housing differentially contributes to behavior in male and female rats, blunting alcohol intake in females, and unmasking stress history effects on anxiety-like behavior in males.


Subject(s)
Alcohol Drinking/psychology , Anxiety/psychology , Housing, Animal , Sex Characteristics , Social Isolation/psychology , Stress, Psychological/psychology , Alcohol Drinking/adverse effects , Animals , Female , Male , Rats , Rats, Wistar , Recurrence , Self Administration
2.
Int Rev Neurobiol ; 150: 129-153, 2020.
Article in English | MEDLINE | ID: mdl-32204829

ABSTRACT

Stress alters both cognitive and emotional function, and increases risk for a variety of psychological disorders, such as depression and posttraumatic stress disorder. The prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Therefore, understanding how stress-induced changes in the structure and function of the prefrontal cortex are related to stress-induced changes in behavior may elucidate some of the mechanisms contributing to stress-sensitive disorders. This review focuses on data from rodent models to describe the effects of chronic stress on behaviors mediated by the medial prefrontal cortex, the effects of chronic stress on the morphology and physiology of the medial prefrontal cortex, mechanisms that may mediate these effects, and evidence for sex differences in the effects of stress on the prefrontal cortex. Understanding how stress influences prefrontal cortex and behaviors mediated by it, as well as sex differences in this effect, will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in executive function and emotion regulation.


Subject(s)
Behavior, Animal/physiology , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Sex Characteristics , Stress, Psychological/physiopathology , Animals
3.
Horm Behav ; 117: 104615, 2020 01.
Article in English | MEDLINE | ID: mdl-31634476

ABSTRACT

Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.


Subject(s)
Adaptation, Physiological/physiology , Behavior, Animal/physiology , Prefrontal Cortex/metabolism , Repetition Priming/physiology , Stress, Psychological/genetics , Adaptation, Physiological/genetics , Animals , Attention/drug effects , Female , Gene Expression/physiology , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical/psychology , Sex Characteristics , Stress, Psychological/metabolism , Synaptic Transmission/physiology
4.
Dev Neurobiol ; 79(9-10): 839-856, 2019 09.
Article in English | MEDLINE | ID: mdl-31612626

ABSTRACT

Adolescence is an important period for HPA axis development and synapse maturation and reorganization in the prefrontal cortex (PFC). Thus, stress during adolescence could alter stress-sensitive brain regions such as the PFC and may alter the impact of future stressors on these brain regions. Given that women are more susceptible to many stress-linked psychological disorders in which dysfunction of PFC is implicated, and that this increased vulnerability emerges in adolescence, stress during this time could have sex-dependent effects. Therefore, we investigated the effects of adolescent social instability stress (SIS) on dendritic morphology of Golgi-stained pyramidal cells in the medial PFC of adult male and female rats. We then examined dendritic reorganization following chronic restraint stress (CRS) with and without a rest period in adult rats that had been stressed in adolescence. Adolescent SIS conferred long-term alterations in prelimbic of males and females, whereby females show reduced apical length and basilar thin spine density and males show reduced basilar length. CRS in adulthood failed to produce immediate dendritic remodeling in SIS rats. However, CRS followed by a rest period reduced apical dendritic length and increases mushroom spine density in adolescently stressed adult males. Conversely, CRS followed by rest produced apical outgrowth and decreased mushroom spine density in adolescently stressed adult females. These results suggest that stress during adolescence alters development of the PFC and modulates stress-induced dendritic changes in adulthood.


Subject(s)
Dendrites/pathology , Hypothalamo-Hypophyseal System/physiopathology , Prefrontal Cortex/physiopathology , Stress, Physiological/physiology , Animals , Dendrites/physiology , Female , Hypothalamo-Hypophyseal System/physiology , Male , Pituitary-Adrenal System/pathology , Pituitary-Adrenal System/physiopathology , Prefrontal Cortex/pathology , Pyramidal Cells/pathology , Rats, Sprague-Dawley , Stress, Psychological/physiopathology
5.
Neurobiol Stress ; 10: 100147, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30937353

ABSTRACT

Prolonged or repeated exposure to stress increases risk for a variety of psychological disorders, many of which are marked by dysfunction of corticolimbic brain regions. Notably, women are more likely than men to be diagnosed with these disorders, especially when onset of symptoms follows stressful life events. Using rodent models, investigators have recently begun to elucidate sex-specific changes in the brain and behavior that occur immediately following chronic stress. However, little is known regarding the lasting sequelae of chronic stress, as well as how potential changes may impact responsivity to future stressors. We recently demonstrated that male and female rats show different patterns of dendritic reorganization in medial prefrontal cortex in the days following chronic stress. Here, we examined the immediate and lasting effects of chronic restraint stress (CRS; 3 h/day, 10 days) on neuronal activation, across several corticolimbic brain regions, induced by novel acute stress exposure. Chronically stressed male and female rats were exposed to acute elevated platform stress (EPS) either 1 (CRS-EPS) or 7 (CRS-Rest-EPS) days after CRS. Compared to rats exposed to EPS only, significant reductions in acute stress-induced c-Fos expression were observed in the medial prefrontal cortex, hippocampus, and paraventricular nucleus of the hypothalamus (PVN) in CRS-EPS male rats, some of which persisted to 7 days post-stress. In contrast, we found little modulation of novel stress-induced c-Fos expression in CRS-EPS female rats. However, CRS-Rest-EPS female rats exhibited a significant enhancement of acute stress-induced neuronal activity in the PVN. Together, these data show that prior chronic stress produces sex- and region-specific alterations in novel stress-induced neuronal activation, which are dependent on the presence or absence of a rest period following chronic stress. These findings suggest that the post-stress rest period may give rise to sex-specific neuroadaptations to stress, which may underlie sex differences in stress susceptibility versus resilience.

6.
Neuropharmacology ; 159: 107513, 2019 11 15.
Article in English | MEDLINE | ID: mdl-30716416

ABSTRACT

The ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy. Maoa hypomorphic transgenic mice were exposed to an early-life stress regimen consisting of maternal separation and daily intraperitoneal saline injections and were then compared with their wild-type and non-stressed controls for ASB-related neurobehavioral phenotypes. Maoa hypomorphic mice subjected to stress from postnatal day (PND) 1 through 7 - but not during the second postnatal week - developed overt aggression, social deficits and abnormal stress responses from the fourth week onwards. On PND 8, these mice exhibited low resting heart rate - a well-established premorbid sign of ASB - and a significant and selective up-regulation of serotonin 5-HT2A receptors in the prefrontal cortex. Notably, both aggression and neonatal bradycardia were rescued by the 5-HT2 receptor antagonist ketanserin (1-3 mg kg-1, IP), as well as the selective 5-HT2A receptor blocker MDL-100,907 (volinanserin, 0.1-0.3 mg kg-1, IP) throughout the first postnatal week. These findings provide the first evidence of a molecular basis of G×E interactions in ASB and point to early-life 5-HT2A receptor activation as a key mechanism for the ontogeny of this condition. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.


Subject(s)
Antisocial Personality Disorder/metabolism , Gene-Environment Interaction , Maternal Deprivation , Receptor, Serotonin, 5-HT2A/metabolism , Stress, Psychological/metabolism , Age Factors , Animals , Animals, Newborn , Antisocial Personality Disorder/psychology , Dose-Response Relationship, Drug , Female , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Transgenic , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Stress, Psychological/psychology
7.
Psychopharmacology (Berl) ; 236(1): 59-72, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30225660

ABSTRACT

BACKGROUND: Stress is associated with cognitive and emotional dysfunction, and increases risk for a variety of psychological disorders, including depression and posttraumatic stress disorder. Prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Extinction of conditioned fear provides an excellent model system for examining how stress-induced changes in corticolimbic structure and function are related to stress-induced changes in neural function and behavior, as the neural circuitry underlying this behavior is well characterized. OBJECTIVES: This review examines how acute and chronic stress influences extinction and describes how stress alters the structure and function of the medial prefrontal cortex, a potential neural substrate for these effects. In addition, we identify important unanswered questions about how stress-induced change in prefrontal cortex may mediate extinction deficits and avenues for future research. KEY FINDINGS: A substantial body of work demonstrates deficits in extinction after either acute or chronic stress. A separate and substantial literature demonstrates stress-induced neuronal remodeling in medial prefrontal cortex, along with several key neurohormonal contributors to this remodeling, and there is substantial overlap in prefrontal mechanisms underlying extinction and the mechanisms implicated in stress-induced dysfunction of-and neuronal remodeling in-medial prefrontal cortex. However, data directly examining the contribution of changes in prefrontal structure and function to stress-induced extinction deficits is currently lacking. CONCLUSIONS: Understanding how stress influences extinction and its neural substrates as well as individual differences in this effect will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in extinction.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Fear/psychology , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Stress, Psychological/psychology , Animals , Humans , Nerve Net/metabolism , Nerve Net/pathology , Neuronal Plasticity/physiology , Prefrontal Cortex/pathology , Stress, Psychological/pathology
8.
J Neurosci ; 38(44): 9423-9432, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30381434

ABSTRACT

Risk for stress-sensitive psychopathologies differs in men and women, yet little is known about sex-dependent effects of stress on cellular structure and function in corticolimbic regions implicated in these disorders. Determining how stress influences these regions in males and females will deepen our understanding of the mechanisms underlying sex-biased psychopathology. Here, we discuss sex differences in CRF regulation of arousal and cognition, glucocorticoid modulation of amygdalar physiology and alcohol consumption, the age-dependent impact of social stress on prefrontal pyramidal cell excitability, stress effects on the prefrontal parvalbumin system in relation to emotional behaviors, contributions of stress and gonadal hormones to stress effects on prefrontal glia, and alterations in corticolimbic structure and function after cessation of chronic stress. These studies demonstrate that, while sex differences in stress effects may be nuanced, nonuniform, and nonlinear, investigations of these differences are nonetheless critical for developing effective, sex-specific treatments for psychological disorders.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Emotions/physiology , Motivation/physiology , Resilience, Psychological , Sex Characteristics , Stress, Psychological/metabolism , Animals , Brain/metabolism , Brain/pathology , Female , Humans , Male , Mental Disorders/metabolism , Mental Disorders/pathology , Mental Disorders/psychology , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Risk Factors , Stress, Psychological/pathology , Stress, Psychological/psychology
9.
Neuroscience ; 357: 145-159, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28596115

ABSTRACT

Chronic stress produces differential dendritic remodeling of pyramidal neurons in medial prefrontal cortex of male and female rats. In males, this dendritic remodeling is reversible. However, the timeline of recovery, as well as the potential for reversibility in females, is unknown. Here, we examined dendritic recovery of pyramidal neurons in layer II-II of prelimbic cortex in male and female rats following chronic restraint stress (3h/day for 10days). Dendritic morphology and spine density were analyzed immediately following the cessation of stress, or following a 7- or 10-day recovery period. Chronic stress produced apical dendritic retraction in males, which was coupled with a decrease in the density of stubby spine on apical dendrites. Further, following a 10-day recovery period, the morphology of neurons from stressed rats resembled that of unstressed rats. Male rats given a 7-day recovery period had apical dendritic outgrowth compared to unstressed rats. Immediately after cessation of stress, females showed only minimal dendritic remodeling. The morphology of neurons in stressed females resembled those of unstressed rats following only 7days of recovery, at which time there was also a significant increase in stubby spine density. Males and females also showed different changes in baseline corticosterone concentrations during recovery. These findings not only indicate that dendritic remodeling in prelimbic cortex following chronic stress is different between males and females, but also suggest chronic stress induces differential hypothalamic-pituitary-adrenal axis dysregulation in males and females. These differences may have important implications for responses to subsequent stressors.


Subject(s)
Dendrites/physiology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiopathology , Sex Characteristics , Stress, Psychological/physiopathology , Adrenal Glands/pathology , Animals , Body Weight/physiology , Cell Size , Chronic Disease , Corticosterone/blood , Dendrites/pathology , Disease Models, Animal , Female , Male , Neuronal Outgrowth/physiology , Organ Size , Prefrontal Cortex/pathology , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Rats, Sprague-Dawley , Recovery of Function/physiology , Restraint, Physical , Stress, Psychological/pathology
10.
Neurobiol Stress ; 3: 23-33, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26844245

ABSTRACT

Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies.

11.
Neurosci Lett ; 601: 41-5, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-25529195

ABSTRACT

The medial prefrontal cortex (mPFC) is involved in a variety of important functions including emotional regulation, HPA axis regulation, and working memory. It also demonstrates remarkable plasticity in an experience-dependent manner. There is extensive evidence that stressful experiences can produce profound changes in the morphology of neurons within mPFC with a variety of behavioral consequences. The deleterious behavioral outcomes associated with mPFC dysfunction have been implicated in multiple psychopathologies, including post-traumatic stress disorder (PTSD). Given the prevalence of these disorders, a deeper understanding of the cellular mechanisms underlying stress-induced morphological changes in mPFC is critical, and could lead to improved therapeutic treatments. Here we give a brief review of recent studies examining the mechanisms underlying changes in mPFC pyramidal neuron dendritic spines - the primary sites of excitatory input in cortical pyramidal neurons. We begin with an overview of the effects of chronic stress on mPFC dendritic spine density and morphology followed by proposed mechanisms for these changes. We then discuss the time course of stress effects on mPFC as well as potential intercellular influences. Given that many psychopathologies, including PTSD, have different prevalence rates among men and women, we end with a discussion of the sex differences that have been observed in morphological changes in mPFC. Future directions and implications for PTSD are discussed throughout.


Subject(s)
Dendritic Spines/pathology , Prefrontal Cortex/pathology , Stress Disorders, Post-Traumatic/pathology , Stress, Psychological/pathology , Animals , Dendritic Spines/metabolism , Female , Humans , Male , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Sex Factors , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...