Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0268551, 2022.
Article in English | MEDLINE | ID: mdl-35580081

ABSTRACT

Oxidative stress and lipotoxicity effects on pancreatic ß cells play a major role in the pathogenesis of type 2 diabetes (T2D). Flavonoids and antioxidants are under study for their cytoprotective effects and antidiabetic potential. In this study, we aimed to compare the protective effect of the Rooibos components aspalathin, isoorientin, 3-hydroxyphloretin (3-OH) and green Rooibos extract (GRT) itself, and exendin-4 and N-acetylcysteine (NAC) as reference molecules, against lipotoxicity and oxidative stress. The insulin-producing ß cell line INS1E was exposed to hydrogen peroxide or streptozotocin (STZ) to induce oxidative stress, and palmitate to induce lipotoxicity. Cell viability was assessed by a MTS cell viability assay. Antioxidant response and antiapoptotic gene expression was performed by qRT-PCR. Glucose transporter 2 (GLUT 2) transporter inhibition was assessed through 2-NBDG uptake. GRT and the flavonoids aspalathin and 3-hydroxyphloretin offered significant protection against oxidative stress and lipotoxicity. GRT downregulated expression of pro-apoptotic genes Txnip and Ddit3. The flavonoids aspalathin and 3-hydroxyphloretin also downregulated these genes and in addition upregulated expression of antioxidant response genes Hmox1, Nqo1 and Sod1. Isoorientin gave no cytoprotection. Cytoprotection by Rooibos components was significantly higher than by NAC or exendin-4. Rooibos components strongly protect INS1E ß cells against diabetogenic stress. Cytoprotection was associated with the upregulation of antioxidant response genes of the NRF2/KEAP1 pathway or suppression of the TXN system. The Rooibos molecules offered better protection against these insults than exendin-4 and NAC, making them interesting candidates as ß cell cytoprotectants for therapeutic or nutraceutical applications.


Subject(s)
Aspalathus , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Antioxidants/analysis , Antioxidants/pharmacology , Cell Death , Diabetes Mellitus, Type 2/drug therapy , Exenatide/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Protective Agents/pharmacology
2.
Mol Nutr Food Res ; 64(8): e1901009, 2020 04.
Article in English | MEDLINE | ID: mdl-32012427

ABSTRACT

SCOPE: Aspalathin, the main polyphenolic phytochemical of rooibos (Aspalathus linearis), has been attributed with health promoting properties, including a glucose lowering effect that can prove interesting for application as nutraceutical or therapeutic in (pre-)diabetics. Preservation of ß cell mass in the pancreas is considered a key issue for diabetes prevention or treatment, therefore the aim is to investigate whether aspalathin also has ß cell cytoprotective potential. METHODS AND RESULTS: Rat pancreatic islets and the ß cell line Insulinoma 1E (INS1E) are studied in vitro after exposure to various cytotoxic agents, namely streptozotocin (STZ), hydrogen peroxide, or chronic high glucose. The effect of aspalathin on cell survival and apoptosis is studied. Expression of relevant cytoprotective genes is analyzed by qRT-PCR and proteins by Western blot. Aspalathin is found to protect ß cells against cytotoxicity and apoptosis. This is associated with increased translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and expression of its antioxidant target genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo-1), and superoxide dismutase 1 (Sod1). CONCLUSION: It is proposed that aspalathin protects ß cells against glucotoxicity and oxidative stress by increasing the expression of NRF2-regulated antioxidant enzymes. This indicates that aspalathin is an interesting ß cell cytoprotectant.


Subject(s)
Chalcones/pharmacology , Insulin-Secreting Cells/drug effects , Oxidative Stress/drug effects , Protective Agents/pharmacology , Animals , Cell Death/drug effects , Cells, Cultured , Chalcones/administration & dosage , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Glucose/toxicity , Heme Oxygenase (Decyclizing)/genetics , Hydrogen Peroxide/toxicity , Male , Oxidative Stress/genetics , Rats, Wistar , Streptozocin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...