Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 941: 173555, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38806120

ABSTRACT

A sound evaluation of the cadmium (Cd) mass balance in agricultural soils needs accurate data of Cd leaching. Reported Cd concentrations from in situ studies are often one order of magnitude lower than predicted by empirical models, which were calibrated to pore water data from stored soils. It is hypothesized that this discrepancy is related to the preferential flow of water (non-equilibrium) and/or artefacts caused by drying and rewetting soils prior to pore water analysis. These hypotheses were tested on multiple soils (n = 27) with contrasting properties. Pore waters were collected by soil centrifugation from field fresh soil samples and also after incubating the same soils (28 days, 20 °C), following two drying-rewetting cycles, the idea being that chemical equilibrium in the soil is reached after incubation. Incubation increased pore water Cd by a factor 4, on average, and up to a factor 16. That increase was statistically related to the decrease of pore water pH and the increase of nitrate, both mainly related to incubation-induced nitrification. After correcting for both factors, the Cd rise was also highest at higher pore water Ca. This suggests that higher Ca in soil enlarges Cd concentration gradients among pore classes in field fresh soils because high Ca promotes soil aggregation and separation of mobile from immobile water. Several empirical models were used to predict pore water Cd. Predictions exceeded observations up to a factor 30 for the fresh pore waters but matched well with those of incubated soils; again, deviations from the 1:1 line in field fresh soils were largest in high Ca (>0.8 mM) soils, suggesting that local equilibrium conditions in field fresh soils are not found at higher Ca. Our results demonstrate that empirical models need recalibration with field fresh pore water data to make accurate soil Cd mass balances in risk assessments.

2.
Environ Sci Technol ; 58(1): 440-448, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38108297

ABSTRACT

A novel binding layer (BL) as part of the diffusive gradients in thin films (DGT) technique was developed for the two-dimensional visualization and quantification of labile phosphorus (P) in soils. This BL was designed for P detection by synchrotron-based X-ray fluorescence microscopy (XFM). It differs from the conventional DGT BL as the hydrogel is eliminated to overcome the issue that the fluorescent X-rays of P are detected mainly from shallow sample depths. Instead, the novel design is based on a polyimide film (Kapton) onto which finely powdered titanium dioxide-based P binding agent (Metsorb) was applied, resulting in superficial P binding only. The BL was successfully used for quantitative visualization of P diffusion from three conventional P fertilizers applied to two soils. On a selection of samples, XFM analysis was confirmed by quantitative laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The XFM method detected significant differences in labile P concentrations and P diffusion zone radii with the P fertilizer incubation, which were explained by soil and fertilizer properties. This development paves the way for fast XFM analysis of P on large DGT BLs to investigate in situ diffusion of labile P from fertilizers and to visualize large-scale P cycling processes at high spatial resolution.


Subject(s)
Fertilizers , Phosphorus , Phosphorus/analysis , Phosphorus/chemistry , Fertilizers/analysis , X-Rays , Soil/chemistry , Diffusion , Microscopy, Fluorescence
3.
Sci Total Environ ; 890: 164419, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37236457

ABSTRACT

Accurate data of cadmium (Cd) and uranium (U) leaching are needed in the context of identifying their mass balances in agricultural soils. There is some controversy related to sampling methods and the contribution of colloid facilitated transport. Here, leaching was measured in undisturbed unsaturated soils and the impact of colloids was measured with due attention to solution sampling protocols. Soils were sampled in an arable, pH neutral silty loam soil. The columns (n = 8) were irrigated and PTFE suction plates (1 µm pores) at the bottom ensured unsaturated flow. New here is that both percolates and associated suction plates were collected, the elements in the plates were recovered with acid digestion and used as a lower estimate of colloidal forms. The fraction of elements collected in the plates were 33 % (Cd) and 80 % (U) of the total mobility (=percolates + plates), illustrating colloidal transport. Composition of pore water extracted by soil centrifugation varied largely between initial and final samples and showed that colloids increased as a result of reduced solution calcium after leaching two pore volumes with low calcium water. Flow Field-Flow Fractionation (FIFFF) of the pore water and percolates revealed co-elution of U with colloidal organic matter, oxyhydroxides and clay, illustrating colloidal transport of U by these vectors. Colloidal transport of Cd was less pronounced and was dominated by organic matter. Soil extracts with 0.01 M CaCl2 have lower colloid concentration and consequently underestimate mobile U. In contrast, Cd concentrations in 0.01 M CaCl2 extracts exceed that of percolates due to chloride complexation and higher calcium, mobilizing Cd. Soil leaching experiments better indicate potential leaching losses than a single pore water composition because the former yields the time integrated data. Suction plates and/or bottom filters need to be analysed in leaching studies to account for metal transport by colloids.


Subject(s)
Soil Pollutants , Uranium , Cadmium/analysis , Soil/chemistry , Uranium/analysis , Calcium/analysis , Calcium Chloride , Soil Pollutants/analysis , Water/analysis , Colloids/chemistry
4.
Front Plant Sci ; 13: 1055912, 2022.
Article in English | MEDLINE | ID: mdl-36531371

ABSTRACT

The research on strategies to reduce cadmium (Cd) accumulation in cacao beans is currently limited by a lack of understanding of the Cd transfer pathways within the cacao tree. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar through Cd stable isotope fractionation, speciation (X-Ray Absorption Spectroscopy), and localization (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The plant Cd concentrations were 10-28 higher than the topsoil Cd concentrations and increased as placenta< nib< testa< pod husk< root< leaf< branch. The retention of Cd in the roots was low. Light Cd isotopes were retained in the roots whilst heavier Cd isotopes were transported to the shoots (Δ 114/110 Cd shoot-root = 0.27 ± 0.02 ‰ (weighted average ± standard deviation)). Leaf Cd isotopes were heavier than Cd in the branches (Δ 114/110 Cd IF3 leaves-branch = 0.18 ± 0.01 ‰), confirming typical trends observed in annual crops. Nibs and branches were statistically not distinguishable (Δ 114/110 Cd nib-branch = -0.08‰ ± 0.06 ‰), contrary to the leaves and nibs (Δ 114/110 Cd nib-IF3 leaves = -0.25‰ ± 0.05 ‰). These isotope fractionation patterns alluded to a more direct transfer from branches to nibs rather than from leaves to nibs. The largest fraction (57%) of total plant Cd was present in the branches where it was primarily bound to carboxyl-ligands (60-100%) and mainly localized in the phloem rays and phelloderm of the bark. Cadmium in the nibs was mainly bound to oxygen ligands (60-90%), with phytate as the most plausible ligand. The weight of evidence suggested that Cd was transferred like other nutrients from root to shoot and accumulated in the phloem rays and phelloderm of the branches to reduce the transfer to foliage. Finally, the data indicated that the main contribution of nib Cd was from the phloem tissues of the branch rather than from leaf remobilization. This study extended the limited knowledge on Cd accumulation in perennial, woody crops and revealed that the Cd pathways in cacao are markedly different than in annual crops.

5.
J Chromatogr A ; 1599: 203-214, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31047657

ABSTRACT

Colloidal iron(III) oxyhydroxides (FeOx) are important reactive adsorbents in nature. This study was set up to determine the size of environmentally relevant FeOx colloids with new methods, i.e. Flow Field Flow Fractionation (FlFFF-UV-ICP-MS) and single-particle ICP-MS/MS (sp-ICP-MS) and to compare these with standard approaches, i.e. dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), microscopy (TEM), membrane filtration, centrifugation and dialysis. Seven synthetic nano- and submicron FeOx with different mineralogy and coating were prepared and two soil solutions were included. The FlFFF was optimized for Fe recovery, yielding 70-90%. The FlFFF determines particle size with high resolution in a 1 mM NH4HCO3 (pH 8.3) background and can detect Fe-NOM complexes <5 nm and organo-mineral FeOx particles ranging 5-300 nm. The sp-ICP-MS method had a size detection limit for FeOx of about 32-47 nm. The distribution of hydrodynamic diameters of goethite particles detected with FlFFF, NTA and DLS were similar but the values were twice as large as the Fe cores of particles detected with sp-ICP-MS and TEM. Conventional fractionation by centrifugation and dialysis generally yielded similar fractions as FlFFF but membrane filtration overestimated the large size fractions. Particles formed from Fe(II) oxidation in the presence of NOM showed strikingly smaller organo-mineral Fe-Ox colloids as the NOM/Fe ratio increased. The soil solution obtained with centrifugation of an acid peat was dominated by small (<30 nm) Fe-OM complexes and organo-mineral FeOx colloids whereas that of a mineral pH neutral soil mainly contains larger (30-200 nm) Fe-rich particles. The FlFFF-UV-ICP-MS is recommended for environmental studies of colloidal FeOx since it has a wide size detection range, it fractionates in an environmentally relevant background (1 mM NH4HCO3) and it has acceptable element recoveries.


Subject(s)
Chemistry Techniques, Analytical/methods , Colloids/analysis , Ferric Compounds/analysis , Fractionation, Field Flow , Minerals/analysis , Tandem Mass Spectrometry , Chemistry Techniques, Analytical/standards , Colloids/chemistry , Dynamic Light Scattering , Iron Compounds/analysis , Iron Compounds/chemistry , Minerals/chemistry , Nanoparticles/analysis , Particle Size , Soil/chemistry , Spectrum Analysis
6.
Environ Toxicol Chem ; 37(8): 2123-2131, 2018 08.
Article in English | MEDLINE | ID: mdl-29691884

ABSTRACT

Risk assessment of metallic nanoparticles (NPs) is critically affected by the concern that toxicity goes beyond that of the metallic ion. The present study addressed this concern for soils with silver nanoparticles (AgNPs) using the Ag-sensitive nitrification assay. Three agricultural soils (A, B, and C) were spiked with equivalent doses of either AgNP (diameter = 13 nm) or AgNO3 . Soil solution was isolated and monitored over 97 d with due attention to accurate Ag fractionation at low (∼10 µg L-1 ) Ag concentrations. Truly dissolved (<1 kDa) Ag in the AgNO3 -amended soils decreased with reaction half-lives of 4 to 22 d depending on the soil, denoting important Ag-aging reactions. In contrast, truly dissolved Ag in AgNP-amended soils first increased by dissolution and subsequently decreased by aging, the concentration never exceeding that in the AgNO3 -amended soils. The half-lives of AgNP transformation-dissolution were approximately 4 d (soils A and B) and 36 d (soil C). The Ag toxic thresholds (10% effect concentrations, milligrams of Ag per kilogram of soil) of nitrification, evaluated at 21 or 35 d after spiking, were similar between the 2 Ag forms (soils A and B) but were factors of 3 to 8 lower for AgNO3 than for AgNP (soil C), largely corroborating dissolution differences. This fate and bioassay showed that AgNPs are not more toxic than AgNO3 at equivalent total soil Ag concentrations and that differences in Ag dissolution at least partially explain toxicity differences between the forms and among soils. Environ Toxicol Chem 2018;37:2123-2131. © 2018 SETAC.


Subject(s)
Metal Nanoparticles/toxicity , Nitrification , Silver/toxicity , Soil/chemistry , Half-Life , Models, Theoretical , Solubility , Toxicity Tests , Water/chemistry
7.
Water Res ; 98: 326-33, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27110889

ABSTRACT

Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 µm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (<1.2 µm) samples of these streams is present in coarse colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals.


Subject(s)
Iron/chemistry , Rivers , Colloids/chemistry , Phosphates/chemistry , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...