Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nature ; 620(7973): 402-408, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532929

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Netrin-1 , Skin Neoplasms , Animals , Humans , Mice , A549 Cells , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Netrin Receptors/antagonists & inhibitors , Netrin Receptors/deficiency , Netrin Receptors/genetics , Netrin-1/antagonists & inhibitors , Netrin-1/deficiency , Netrin-1/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Disease Models, Animal , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Neoplasm Metastasis/drug therapy , Single-Cell Gene Expression Analysis , RNA-Seq , Epithelial Cell Adhesion Molecule/metabolism , Xenograft Model Antitumor Assays , Transforming Growth Factor beta1/pharmacology
2.
Nature ; 616(7955): 168-175, 2023 04.
Article in English | MEDLINE | ID: mdl-36949199

ABSTRACT

The resistance of cancer cells to therapy is responsible for the death of most patients with cancer1. Epithelial-to-mesenchymal transition (EMT) has been associated with resistance to therapy in different cancer cells2,3. However, the mechanisms by which EMT mediates resistance to therapy remain poorly understood. Here, using a mouse model of skin squamous cell carcinoma undergoing spontaneous EMT during tumorigenesis, we found that EMT tumour cells are highly resistant to a wide range of anti-cancer therapies both in vivo and in vitro. Using gain and loss of function studies in vitro and in vivo, we found that RHOJ-a small GTPase that is preferentially expressed in EMT cancer cells-controls resistance to therapy. Using genome-wide transcriptomic and proteomic profiling, we found that RHOJ regulates EMT-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA-damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy. RHOJ interacts with proteins that regulate nuclear actin, and inhibition of actin polymerization sensitizes EMT tumour cells to chemotherapy-induced cell death in a RHOJ-dependent manner. Together, our study uncovers the role and the mechanisms through which RHOJ acts as a key regulator of EMT-associated resistance to chemotherapy.


Subject(s)
Carcinoma, Squamous Cell , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Skin Neoplasms , rho GTP-Binding Proteins , Actins/drug effects , Actins/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/drug effects , Proteomics , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Animals , Mice , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Gene Expression Profiling , Genome
3.
Nature ; 589(7842): 448-455, 2021 01.
Article in English | MEDLINE | ID: mdl-33328637

ABSTRACT

FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1-5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2-CD44-SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state.


Subject(s)
Cadherins/deficiency , Epithelial-Mesenchymal Transition/genetics , Gene Deletion , Neoplasm Metastasis/genetics , Neoplasms/genetics , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Disease Progression , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mesoderm/metabolism , Mesoderm/pathology , Mice , Neoplasm Metastasis/drug therapy , Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Phosphoproteins/analysis , Phosphoproteins/metabolism , Proteomics , SOXB1 Transcription Factors/metabolism , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription Factors/metabolism , YAP-Signaling Proteins , Zinc Finger E-box-Binding Homeobox 1/metabolism , src-Family Kinases/metabolism
4.
Nat Cancer ; 2(11): 1152-1169, 2021 11.
Article in English | MEDLINE | ID: mdl-35122061

ABSTRACT

The nongenetic mechanisms required to sustain malignant tumor state are poorly understood. During the transition from benign tumors to malignant carcinoma, tumor cells need to repress differentiation and acquire invasive features. Using transcriptional profiling of cancer stem cells from benign tumors and malignant skin squamous cell carcinoma (SCC), we identified the nuclear receptor NR2F2 as uniquely expressed in malignant SCC. Using genetic gain of function and loss of function in vivo, we show that NR2F2 is essential for promoting the malignant tumor state by controlling tumor stemness and maintenance in mouse and human SCC. We demonstrate that NR2F2 promotes tumor cell proliferation, epithelial-mesenchymal transition and invasive features, while repressing tumor differentiation and immune cell infiltration by regulating a common transcriptional program in mouse and human SCCs. Altogether, we identify NR2F2 as a key regulator of malignant cancer stem cell functions that promotes tumor renewal and restricts differentiation to sustain a malignant tumor state.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Animals , Carcinoma, Squamous Cell/genetics , Cell Differentiation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice , Neoplastic Processes , Skin Neoplasms/genetics
5.
Cell Rep ; 29(6): 1458-1468.e3, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31693888

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) has been proposed to be important for metastatic dissemination. However, recent studies have challenged the requirement of EMT for metastasis. Here, we assessed in different models of primary skin squamous cell carcinomas (SCCs) whether EMT is associated with metastasis. The incidence of metastasis was much higher in SCCs presenting EMT compared to SCCs without EMT, supporting the notion that a certain degree of EMT is required to initiate the metastatic cascade in primary skin SCCs. Most circulating tumor cells presented EMT, whereas most lung metastasis did not present EMT, showing that mesenchymal-to-epithelial transition is important for metastatic colonization. In contrast, immunodeficient mice transplanted with SCCs, whether displaying EMT or not, presented metastasis. Altogether, our data demonstrate that the association of EMT and metastasis is model dependent, and metastasis of primary skin SCCs is associated with EMT.


Subject(s)
Carcinoma, Squamous Cell/secondary , Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating/metabolism , Skin Neoplasms/pathology , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Epithelial Cell Adhesion Molecule/metabolism , Female , Incidence , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lymphatic Metastasis , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Transplantation , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transplantation, Homologous
6.
Nature ; 556(7702): 463-468, 2018 04.
Article in English | MEDLINE | ID: mdl-29670281

ABSTRACT

In cancer, the epithelial-to-mesenchymal transition (EMT) is associated with tumour stemness, metastasis and resistance to therapy. It has recently been proposed that, rather than being a binary process, EMT occurs through distinct intermediate states. However, there is no direct in vivo evidence for this idea. Here we screen a large panel of cell surface markers in skin and mammary primary tumours, and identify the existence of multiple tumour subpopulations associated with different EMT stages: from epithelial to completely mesenchymal states, passing through intermediate hybrid states. Although all EMT subpopulations presented similar tumour-propagating cell capacity, they displayed differences in cellular plasticity, invasiveness and metastatic potential. Their transcriptional and epigenetic landscapes identify the underlying gene regulatory networks, transcription factors and signalling pathways that control these different EMT transition states. Finally, these tumour subpopulations are localized in different niches that differentially regulate EMT transition states.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms/pathology , Animals , Chromatin/genetics , Epigenesis, Genetic , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mesoderm/metabolism , Mesoderm/pathology , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/genetics , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription, Genetic
7.
Stem Cells ; 35(5): 1355-1364, 2017 05.
Article in English | MEDLINE | ID: mdl-28100039

ABSTRACT

The carcinogenic effect of ionizing radiation has been evaluated based on limited populations accidently exposed to high dose radiation. In contrast, insufficient data are available on the effect of low dose radiation (LDR), such as radiation deriving from medical investigations and interventions, as well as occupational exposure that concern a large fraction of western populations. Using mouse skin epidermis as a model, we showed that LDR results in DNA damage in sebaceous gland (SG) and bulge epidermal stem cells (SCs). While the first commit apoptosis upon low dose irradiation, the latter survive. Bulge SC survival coincides with higher HIF-1α expression and a metabolic switch upon LDR. Knocking down HIF-1α sensitizes bulge SCs to LDR-induced apoptosis, while upregulation of HIF-1α in the epidermis, including SG SCs, rescues cell death. Most importantly, we show that LDR results in cancer formation with full penetrance in the radiation-sensitive Patched1 heterozygous mice. Overall, our results demonstrate for the first time that LDR can be a potent carcinogen in individuals predisposed to cancer. Stem Cells 2017;35:1355-1364.


Subject(s)
Epidermis/radiation effects , Skin Neoplasms/etiology , Stem Cells/radiation effects , Animals , Carcinoma, Basal Cell/pathology , Cell Survival/radiation effects , DNA Damage , Dose-Response Relationship, Radiation , Heterozygote , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Patched-1 Receptor/metabolism , Penetrance , Sebaceous Glands/pathology , Skin Neoplasms/pathology , Stem Cells/metabolism
8.
Nat Cell Biol ; 18(1): 100-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26595384

ABSTRACT

Aneuploidy is found in most solid tumours, but it remains unclear whether it is the cause or the consequence of tumorigenesis. Using Plk4 overexpression (PLK4OE) during epidermal development, we assess the impact of centrosome amplification and aneuploidy on skin development and tumorigenesis. PLK4OE in the developing epidermis induced centrosome amplification and multipolar divisions, leading to p53 stabilization and apoptosis of epidermal progenitors. The resulting delayed epidermal stratification led to skin barrier defects. Plk4 transgene expression was shut down postnatally in the surviving mice and PLK4OE mice never developed skin tumours. Concomitant PLK4OE and p53 deletion (PLK4OE/p53cKO) rescued the differentiation defects, but did not prevent the apoptosis of PLK4OE cells. Remarkably, the short-term presence of cells with supernumerary centrosomes in PLK4OE/p53cKO mice was sufficient to generate aneuploidy in the adult epidermis and triggered spontaneous skin cancers with complete penetrance. These results reveal that aneuploidy induced by transient centrosome amplification can accelerate tumorigenesis in p53-deficient cells.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Centrosome/metabolism , Epidermis/metabolism , Protein Serine-Threonine Kinases/metabolism , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/genetics , Cell Transformation, Neoplastic/genetics , Mice , Protein Serine-Threonine Kinases/genetics , Skin Neoplasms/genetics , Tumor Suppressor Protein p53/deficiency
9.
Genes Dev ; 27(1): 39-51, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23271346

ABSTRACT

The accurate maintenance of genomic integrity is essential for tissue homeostasis. Deregulation of this process leads to cancer and aging. BRCA1 is a critical mediator of this process. Here, we performed conditional deletion of Brca1 during epidermal development and found that BRCA1 is specifically required for hair follicle (HF) formation and for development of adult HF stem cells (SCs). Mice deficient for Brca1 in the epidermis are hairless and display a reduced number of HFs that degenerate progressively. Surprisingly, the interfollicular epidermis and the sebaceous glands remain unaffected by Brca1 deletion. Interestingly, HF matrix transient amplifying progenitors present increased DNA damage, p53 stabilization, and caspase-dependent apoptosis compared with the interfollicular and sebaceous progenitors, leading to hyperproliferation, apoptosis, and subsequent depletion of the prospective adult HF SCs. Concomitant deletion of p53 and Brca1 rescues the defect of HF morphogenesis and loss of HF SCs. During adult homeostasis, BRCA1 is dispensable for quiescent bulge SCs, but upon their activation during HF regeneration, Brca1 deletion causes apoptosis and depletion of Brca1-deficient bulge SCs. Our data reveal a major difference in the requirement of BRCA1 between different types of epidermal SCs and progenitors and during the different activation stages of adult HF SCs.


Subject(s)
BRCA1 Protein/deficiency , BRCA1 Protein/metabolism , Epidermis , Hair Follicle/cytology , Stem Cells , Animals , Apoptosis/genetics , BRCA1 Protein/genetics , DNA Damage/genetics , Epidermal Cells , Epidermis/metabolism , Gene Deletion , Hair Follicle/embryology , Hair Follicle/metabolism , Mice , Mice, Knockout , Stem Cells/cytology , Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism
10.
Cereb Cortex ; 23(11): 2552-67, 2013 Nov.
Article in English | MEDLINE | ID: mdl-22923088

ABSTRACT

Regional patterning of the cerebral cortex is initiated by morphogens secreted by patterning centers that establish graded expression of transcription factors within cortical progenitors. Here, we show that Dmrt5 is expressed in cortical progenitors in a high-caudomedial to low-rostrolateral gradient. In its absence, the cortex is strongly reduced and exhibits severe abnormalities, including agenesis of the hippocampus and choroid plexus and defects in commissural and thalamocortical tracts. Loss of Dmrt5 results in decreased Wnt and Bmp in one of the major telencephalic patterning centers, the dorsomedial telencephalon, and in a reduction of Cajal-Retzius cells. Expression of the dorsal midline signaling center-dependent transcription factors is downregulated, including Emx2, which promotes caudomedial fates, while the rostral determinant Pax6, which is inhibited by midline signals, is upregulated. Consistently, Dmrt5(-/-) brains exhibit patterning defects with a dramatic reduction of the caudomedial cortex. Dmrt5 is increased upon the activation of Wnt signaling and downregulated in Gli3(xt/xt) mutants. We conclude that Dmrt5 is a novel Wnt-dependent transcription factor required for early cortical development and that it may regulate initial cortical patterning by promoting dorsal midline signaling center formation and thereby helping to establish the graded expression of the other transcription regulators of cortical identity.


Subject(s)
Cerebral Cortex/embryology , Transcription Factors/metabolism , Animals , Bone Morphogenetic Protein Receptors/metabolism , Cerebral Cortex/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics , Wnt Proteins/metabolism
11.
Dev Biol ; 373(1): 39-52, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23064029

ABSTRACT

The Dmrt (doublesex and mab-3 related transcription factor) genes encode a large family of evolutionarily conserved transcription factors whose function in sex specific differentiation has been well studied in all animal lineages. In vertebrates, their function is not restricted to the developing gonads. For example, Xenopus Dmrt4 is essential for neurogenesis in the olfactory system. Here we have isolated and characterized Xenopus Dmrt5 and found that it is coexpressed with Dmrt4 in the developing olfactory placodes. As Dmrt4, Dmrt5 is positively regulated in the ectoderm by neural inducers and negatively by proneural factors. Both Dmrt5 and Dmrt4 genes are also activated by the combined action of the transcription factor Otx2, broadly transcribed in the head ectoderm and of Notch signaling, activated in the anterior neural ridge. As for Dmrt4, knockdown of Dmrt5 impairs neurogenesis in the embryonic olfactory system and in neuralized animal caps. Conversely, its overexpression promotes neuronal differentiation in animal caps, a property that requires the conserved C-terminal DMA and DMB domains. We also found that the sea anenome Dmrt4/5 related gene NvDmrtb also induces neurogenesis in Xenopus animal caps and that conversely, its knockdown in Nematostella reduces elav-1 positive neurons. Together, our data identify Dmrt5 as a novel important regulator of neurogenesis whose function overlaps with that of Dmrt4 during Xenopus olfactory system development. They also suggest that Dmrt may have had a role in neurogenesis in the last common ancestor of cnidarians and bilaterians.


Subject(s)
Neurogenesis/physiology , Olfactory Mucosa/embryology , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus/embryology , Animals , COS Cells , Chlorocebus aethiops , DNA Primers/genetics , DNA, Complementary/genetics , Electrophoretic Mobility Shift Assay , Gene Knockdown Techniques , In Situ Nick-End Labeling , Otx Transcription Factors/metabolism , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sea Anemones/genetics , Species Specificity , Transcription Factors/genetics , Transcription Factors/physiology , Xenopus/genetics , Xenopus Proteins/genetics , Xenopus Proteins/physiology
12.
Dev Dyn ; 237(11): 3352-60, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18855900

ABSTRACT

BBP proteins constitute a subclass of CUL3 interacting BTB proteins whose in vivo function remains unknown. Here, we show that the Xenopus BBP gene BTBD6 and the single Drosophila homologue of mammalian BBP genes lute are strongly expressed in the developing nervous system. In Xenopus, BTBD6 expression responds positively to proneural and negatively to neurogenic gene overexpression. Knockdown of BTBD6 in Xenopus or loss of Drosophila lute result in embryos with strong defects in late neuronal markers and strongly reduced and disorganized axons while early neural development is unaffected. XBTBD6 knockdown in Xenopus also affects muscle development. Together, these data indicate that BTBD6/lute is required for proper embryogenesis and plays an essential evolutionary conserved role during neuronal development.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/immunology , Muscle Development/physiology , Muscle Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Xenopus Proteins/metabolism , Animals , Carrier Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Knockdown Techniques , Humans , Muscle Proteins/genetics , Nerve Tissue Proteins/genetics , Nervous System/cytology , Nervous System/embryology , Sequence Homology, Amino Acid , Xenopus Proteins/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...