Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia ; 55(9): 1438-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24903073

ABSTRACT

OBJECTIVE: The isocitrate dehydrogenase 1 (IDH1) R132H mutation is the most common mutation in World Health Organization (WHO) grade II gliomas, reported to be expressed in 70-80%, but only 5-10% of high grade gliomas. Low grade tumors, especially the protoplasmic subtype, have the highest incidence of tumor associated epilepsy (TAE). The IDH1 mutation leads to the accumulation of 2-hydroxyglutarate (2HG), a metabolite that bears a close structural similarity to glutamate, an excitatory neurotransmitter that has been implicated in the pathogenesis of TAE. We hypothesized that expression of mutated IDH1 may play a role in the pathogenesis of TAE in low grade gliomas. METHODS: Thirty consecutive patients with WHO grade II gliomas were analyzed for the presence of the IDH1-R132H mutation using immunohistochemistry. The expression of IDH1 mutation was semiquantified using open-source biologic-imaging analysis software. RESULTS: The percentage of cells positive for the IDH1-R132H mutation was found to be higher in patients with TAE compared to those without TAE (median and interquartile range (IQR) 25.3% [8.6-53.5] vs. 5.2% [0.6-13.4], p = 0.03). In addition, we found a significantly higher median IDH1 mutation expression level in the protoplasmic subtype of low grade glioma (52.2% [IQR 19.9-58.6] vs. 13.8% [IQR 3.9-29.4], p = 0.04). SIGNIFICANCE: Increased expression of the IDH1-R132H mutation is associated with seizures in low grade gliomas and also with the protoplasmic subtype. This supports the hypothesis that this mutation may play a role in the pathogenesis of both TAE and low grade gliomas.


Subject(s)
Astrocytoma/complications , Astrocytoma/genetics , Brain Neoplasms/genetics , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Adolescent , Adult , Aged , Arginine/genetics , Cohort Studies , Epilepsy/etiology , Female , Genetic Association Studies , Histidine/genetics , Humans , Male , Middle Aged , Seizures/complications , Seizures/genetics , Young Adult
2.
J Clin Neurosci ; 21(6): 899-908, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24746886

ABSTRACT

Tumour associated epilepsy (TAE) is common, debilitating and often not successfully controlled by surgical resection of the tumour and administration of multiple anti-epileptic drugs. It represents a cause of significant lost quality of life in an incurable disease and is therefore an important subject for ongoing research. The pathogenesis of TAE is likely to be multifactorial and involve, on the microscopic level, the interaction of genetic factors, changes in the peritumoural microenvironment, alterations in synaptic neurotransmitter release and re-uptake, and the excitotoxic effects of glutamate. On a macroscopic level, the occurrence of TAE is likely to be influenced by tumour size, location and interaction with environmental factors. The optimal treatment of TAE requires a multi-disciplinary approach with input from neurosurgeons, neurologists, radiologists, pathologists and basic scientists. This article reviews the current literature regarding the incidence, treatment, and aetiology of TAE.


Subject(s)
Brain Neoplasms/metabolism , Epilepsy/metabolism , Glioma/metabolism , Glutamic Acid/metabolism , Animals , Brain Neoplasms/diagnosis , Brain Neoplasms/epidemiology , Epilepsy/diagnosis , Epilepsy/epidemiology , Glioma/diagnosis , Glioma/epidemiology , Humans , Quality of Life , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...