Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 18(7): e0288445, 2023.
Article in English | MEDLINE | ID: mdl-37471391

ABSTRACT

Ecological dynamics are strongly influenced by the relationship between prey density and predator feeding behavior-that is, the predatory functional response. A useful understanding of this relationship requires us to distinguish between competing models of the functional response, and to robustly estimate the model parameters. Recent advances in this topic have revealed bias in model comparison, as well as in model parameter estimation in functional response studies, mainly attributed to the quality of data. Here, we propose that an adaptive experimental design framework can mitigate these challenges. We then present the first practical demonstration of the improvements it offers over standard experimental design. Our results reveal that adaptive design can efficiently identify the preferred functional response model among the competing models, and can produce much more precise posterior distributions for the estimated functional response parameters. By increasing the efficiency of experimentation, adaptive experimental design will lead to reduced logistical burden.


Subject(s)
Predatory Behavior , Research Design , Animals , Female , Male , Models, Biological , Predatory Behavior/physiology , Reproducibility of Results
2.
J R Soc Interface ; 17(166): 20200156, 2020 05.
Article in English | MEDLINE | ID: mdl-32396811

ABSTRACT

Understanding functional response within a predator-prey dynamic is a cornerstone for many quantitative ecological studies. Over the past 60 years, the methodology for modelling functional response has gradually transitioned from the classic mechanistic models to more statistically oriented models. To obtain inferences on these statistical models, a substantial number of experiments need to be conducted. The obvious disadvantages of collecting this volume of data include cost, time and the sacrificing of animals. Therefore, optimally designed experiments are useful as they may reduce the total number of experimental runs required to attain the same statistical results. In this paper, we develop the first sequential experimental design method for predator-prey functional response experiments. To make inferences on the parameters in each of the statistical models we consider, we use sequential Monte Carlo, which is computationally efficient and facilitates convenient estimation of important utility functions. It provides coverage of experimental goals including parameter estimation, model discrimination as well as a combination of these. The results of our simulation study illustrate that for predator-prey functional response experiments sequential design outperforms static design for our experimental goals. R code for implementing the methodology is available via https://github.com/haydenmoffat/sequential_design_for_predator_prey_experiments.


Subject(s)
Predatory Behavior , Research Design , Animals , Computer Simulation , Models, Biological , Monte Carlo Method , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL