Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Simul (Lond) ; 9(1): 7, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342893

ABSTRACT

BACKGROUND: Despite advances in simulator technology, live anaesthetised animals continue to be used as human patient simulators for medical professionals to practice techniques in the management of surgical trauma. This article describes the process of convening a working group of individuals with a professional interest in simulation to discuss the use of live animals and consider if and how they can be replaced in the future. MAIN BODY: A working group was formed of voluntary attendees to a workshop held at the SESAM 2023 conference. Iterative discussions reflecting on the topic were used to produce statements summarising the working group's opinions. The working group determined that live animals are used as human patient simulators due to the presence of accurate and responsive physiology in the presence of bleeding, realistic tissue tactility and an emotional response experienced by the learner due to interaction with the animal. They were unable to reach a consensus on replacement, determining that there is currently no single model which is able to provide all the learning aspects which a live animal model can provide. Several suggestions were made regarding development of technologies and pedagogical change. CONCLUSION: Replacement of live animals in surgical simulation is not straightforward but should be an aspiration, if possible. For the ongoing development of trauma surgical simulation models, it is important to combine the knowledge, skills and perspectives of medical stakeholders and educators, academic researchers and industry experts in producing alternative options to the use of live animal simulators.

2.
PLoS Comput Biol ; 12(4): e1004619, 2016 04.
Article in English | MEDLINE | ID: mdl-27124275

ABSTRACT

Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.


Subject(s)
Macromolecular Substances/chemistry , Molecular Dynamics Simulation/statistics & numerical data , Algorithms , Computational Biology , Computer Simulation , Models, Molecular , Molecular Structure , Monte Carlo Method , Nucleic Acids/chemistry , Protein Folding , Protein Interaction Domains and Motifs
SELECTION OF CITATIONS
SEARCH DETAIL
...