Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(21): 12358-12367, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30264996

ABSTRACT

Ice-nucleating particles (INPs) associated with fresh waters are a neglected, but integral component of the water cycle. Abundant INPs were identified from surface waters of both the Maumee River and Lake Erie with ice nucleus spectra spanning a temperature range from -3 to -15 °C. The majority of river INPs were submicron in size and attributed to biogenic macromolecules, inferred from the denaturation of ice-nucleation activity by heat. In a watershed dominated by row-crop agriculture, higher concentrations of INPs were found in river samples compared to lake samples. Further, ice-nucleating temperatures differed between river and lake samples, which indicated different populations of INPs. Seasonal analysis of INPs that were active at warmer temperatures (≥-10 °C; INP-10) showed their concentration to correlate with river discharge, suggesting a watershed origin of these INPs. A terrestrial origin for INPs in the Maumee River was further supported by a correspondence between the ice-nucleation signatures of river INPs and INPs derived from the soil fungus Mortierella alpina. Aerosols derived from turbulence features in the river carry INP-10, although their potential influence on regional weather is unclear. INP-10 contained within aerosols generated from a weir spanning the river, ranged in concentration from 1 to 11 INP m-3, which represented a fold-change of 3.2 over average INP-10 concentrations sampled from aerosols at control locations.


Subject(s)
Bacterial Outer Membrane Proteins , Ice , Freezing , Soil , Temperature
2.
Proc Natl Acad Sci U S A ; 113(21): 5797-803, 2016 May 24.
Article in English | MEDLINE | ID: mdl-26699469

ABSTRACT

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

3.
Appl Environ Microbiol ; 80(4): 1256-67, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317082

ABSTRACT

Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼10(8) ina genes g(-1) fresh weight of foliage on cereals and 10(5) to 10(7) g(-1) on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at -10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at -10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at -10°C, suggesting a significant contribution to this sample.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacterial Outer Membrane Proteins/genetics , Plants/microbiology , Bacterial Load , Bacterial Proteins/genetics , Molecular Sequence Data , Plant Leaves/microbiology , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Temperature
4.
FEMS Microbiol Ecol ; 43(1): 1-11, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-19719691

ABSTRACT

Abstract There are many ecological diversity measures, but their suitability for use with highly diverse bacterial communities is unclear and seldom considered. We assessed a range of species richness and evenness/dominance indices, and the use of species abundance models using samples of bacteria from zinc-contaminated and control soils. Bacteria were assigned to operational taxonomic units (OTUs) using amplified ribosomal DNA restriction analysis of 236 clones from each soil. The reduced diversity apparent in the contaminated soil was reflected by the diversity indices to varying degrees. The number of clones analysed and the weighting given to rare vs. abundant OTUs are the most important considerations when selecting measures. Our preferences, arrived at using theory and practical experience, include: the log series index alpha; the Q statistic (but only if coverage is 50% or more); the Berger-Parker and Simpson's indices, although their ecological relevance may be limited; and, unexpectedly, the Shannon-Wiener and Shannon evenness indices, even though their meanings may not be clear and their values inaccurate when coverage is low. For extrapolation, the equation for the log series distribution seems the best for extrapolating from OTU accumulation curves while non-parametric methods, such as Chao 1, show promise for estimating total OTU richness. Due to a preponderance of single-occurrence OTUs, none of the five species abundance models fit the OTU abundance distribution of the control soil, but both the log and log normal models fit the less diverse contaminated soil. Species abundance models are useful, irrespective of coverage, because they address the whole distribution of a sample, aiding comparison by revealing overall trends as well as specific changes in particular abundance classes.

5.
FEMS Microbiol Ecol ; 43(1): 13-9, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-19719692

ABSTRACT

Abstract Around half a million tonnes of biosolids (sewage sludge dry solids) are applied to agricultural land in the United Kingdom each year, and this may increase to 732 000 t by 2005/6. The heavy metals contained in biosolids may permanently degrade the microbial decomposer communities of agricultural soils. We used amplified ribosomal DNA restriction analysis of the extractable bacterial fraction to compare the diversity of a zinc-contaminated soil (400 mg kg(-1) Zn; pH 5.7 and 1.36% C(org)) with that of a control soil (57 mg kg(-1) Zn; pH 6.2 and 1.40% C(org)) from a long-term sewage sludge experiment established in 1982 at ADAS Gleadthorpe. Comparison of the restriction fragment length polymorphisms of 236 clones from each soil suggested that the stress caused by zinc toxicity had lowered bacterial diversity. There were 120 operational taxonomic units (OTUs) in the control soil, but only 90 in the treated soil, a decrease of 25%. While the control soil had 82 single-occurrence OTUs the contaminated soil had only 52. The fall in diversity was accompanied by a decrease in evenness. The most abundant OTUs in the contaminated soil (which tended to be common to both soils) accounted for a higher proportion of clones than in the control. The most dominant OTU, in both soils, belonged to the Rubrobacter radiotolerans group of the high G+C Gram-positive bacteria. The data was also used to develop efficient sampling strategies.

6.
Waste Manag Res ; 20(6): 529-35, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12549664

ABSTRACT

Bacteria associated with leachate from a constructed, surface-flow wetland effective at removing ammonium-N, were characterised using molecular methods which bypass the need for cultivation. DNA was extracted from the sample and bacterial 16S rDNA sequences amplified and cloned. Ninety-six individual clones were re-amplified and analysed by restriction digestion and targeted sequencing. A collector's curve was used to estimate the total number of bacterial groups (operational taxonomic units, OTUs) in the sample at 47. Thirty-six clones representing 28 OTUs were sequenced and characterised by aligning them against published sequences. Of these, 10 were confidently identified, whilst for the remaining 18, the closest match was obtained. The sequences in 64% of the OTUs were similar to those of the Proteobacteria but no classical nitrifying bacteria were identified. However, alkaliphilic Methylomicrobium sp. that oxidise ammonium and bacteria from the genus Alcaligenes, at least one species of which is capable of heterotrophic nitrification, were detected.


Subject(s)
DNA, Bacterial/genetics , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Refuse Disposal , Ecosystem , Polymerase Chain Reaction , Proteobacteria/isolation & purification , Sequence Analysis, DNA , Soil Microbiology , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...