Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 184: 62-67, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32479834

ABSTRACT

Snake venoms are inherently complex. They are mixtures of multiple enzymes, peptides, lipids, carbohydrates, nucleosides, and metal ions. Metal ions make up a small portion of a snake's venom but play outsized roles in enzyme function and stability. Unlike enzyme primary structure, which is easily predicted from genomic sequences, a venom's metal ion content must be measured directly. We leveraged the high throughput and sensitivity of inductively coupled plasma mass spectrometry to analyze the metal ion content of seven North American snake venoms. All venoms were collected from snakes reared at one location, so we could discount variation from environmental or geographical factors. We profiled 71 metal isotopes. Selenium isotopes were consistently high across all venoms tested. When each venom's toxicity was graphed as a function of each different metal isotope, the only strong relationships between metal content and toxicity were for magnesium isotopes.


Subject(s)
Snake Venoms/analysis , Animals , Mass Spectrometry , Peptides , Proteomics , Snakes , United States
2.
Mil Med ; 185(5-6): e831-e838, 2020 06 08.
Article in English | MEDLINE | ID: mdl-31875899

ABSTRACT

INTRODUCTION: Dental readiness, one critical component of medical readiness, is adversely impacted by dental emergencies. Many dental emergencies require restorative materials such as glass ionomers, resins, and zinc oxide eugenols to remedy them. The Authorized Dental Allowance List (ADAL) and Authorized Medical Allowance List (AMAL) contain the equipment and materials used by Navy dentists to treat Sailors and Marines. These supplies are subjected to harsh storage conditions on deployments. Much is known about how materials behave when stored at room temperature, but less is known about how their properties are affected after exposure to high temperatures and humidity. We subjected five dental restorative materials to storage in aggravated conditions, and then tested them to determine which products are more robust. MATERIALS AND METHODS: Unopened packages of Fuji Triage, Fuji IX GP (both GC America Inc., Alsip, Illinois), TPH Spectra ST Low Viscosity, Intermediate Restorative Material (both Dentsply Sirona, York, Pennsylvania), and Herculite XRV (Kerr Corporation, Orange, California) were exposed to 0, 5, or 10 days' storage at 30-60°C with 95% relative humidity. After storage in these aggravated conditions, we tested the compressive strength, hardness, elastic modulus, flexural strength, flexural modulus, sorption, and solubility of each material. RESULTS: The physical properties of all materials were affected by storage in aggravated conditions, though the properties of some materials degraded more than others. Both glass ionomers, Fuji Triage (P = 0.0012) and Fuji IX GP (P = 0.0031), and the composite Herculite XRV (P = 0.0253) lost compressive strength after 5 or 10 days in aggravated conditions. The hardness values for all materials were affected (P < 0.05) by the aggravated conditions, though the elastic modulus of TPH Spectra was not affected (P > 0.05). None of the materials lost flexural strength (P > 0.05) or had changes in their flexural modulus (P > 0.05). The water sorption behavior of Fuji Triage (P = 0.0426) and Fuji IX GP (P = 0.0201) changed after 10 days of aggravated storage, and the solubility of all materials was altered by the harsh conditions. CONCLUSION: Some materials degrade more than others in aggravated conditions. Both resin composite materials were more resistant to high temperatures and humidity levels than the glass ionomers tested. These changes in physical characteristics should be considered when reviewing or optimizing the ADAL/AMAL for different projected operational environments.


Subject(s)
Military Personnel , Compressive Strength , Hardness , Humans , Materials Testing , Pennsylvania
3.
PLoS One ; 14(10): e0223272, 2019.
Article in English | MEDLINE | ID: mdl-31584962

ABSTRACT

The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.


Subject(s)
Nicotinic Antagonists/pharmacology , Pregnenolone/pharmacology , Receptors, Nicotinic/metabolism , Torpedo/metabolism , Triiodothyronine/pharmacology , Animals , Dose-Response Relationship, Drug , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/pharmacology , Inhibitory Concentration 50 , Kinetics , Molecular Structure , Nicotinic Antagonists/chemistry , Oocytes/metabolism , Pregnenolone/chemistry , Receptors, GABA-A/metabolism , Triiodothyronine/chemistry
4.
Sci Rep ; 7(1): 15758, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29150679

ABSTRACT

Evidence suggests that electroencephalographic (EEG) activity extends far beyond the traditional frequency range. Much of the prior study of >120 Hz EEG is in epileptic brains. In the current work, we measured EEG activity in the range of 200 to 2000 Hz, in the brains of healthy, spontaneously behaving rats. Both arrhythmic (1/f-type) and rhythmic (band) activities were identified and their properties shown to depend on EEG-defined stage of sleep/wakefulness. The inverse power law exponent of 1/f-type noise is shown to decrease from 3.08 in REM and 2.58 in NonREM to a value of 1.99 in the Waking state. Such a trend represents a transition from long- to short-term memory processes when examined in terms of the corresponding Hurst index. In addition, treating the 1/f-type activity as baseline noise reveals the presence of two, newly identified, high frequency EEG bands. The first band (ψ) is centered between 260-280 Hz; the second, and stronger, band is a broad peak in the 400-500 Hz range (termed ω). Both of these peaks display lognormal distributions. The functional significance of these frequency bands is supported by the variation in the strength of the peaks with EEG-defined sleep/wakefulness.


Subject(s)
Brain Mapping , Brain/physiology , Animals , Electroencephalography , Male , Rats, Sprague-Dawley , Signal Processing, Computer-Assisted , Sleep, REM/physiology , Wakefulness
5.
Horm Behav ; 64(1): 81-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23702093

ABSTRACT

The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3',5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 µg T1AM, but not after 0.3 or 10 µg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose-response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain.


Subject(s)
Body Temperature Regulation/drug effects , Motor Activity/drug effects , Preoptic Area/physiology , Sleep/drug effects , Thyronines/pharmacology , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electroencephalography/drug effects , Electromyography/drug effects , Male , Microinjections , Rats , Rats, Sprague-Dawley , Sleep, REM/drug effects , Thyronines/administration & dosage , Triiodothyronine/pharmacology , Wakefulness/physiology
6.
Brain Res ; 1516: 55-65, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23603414

ABSTRACT

Thyroid hormones induce short-latency nongenomic effects in adult brain tissue, suggesting that their acute administration would affect brain activity in intact animals. The influence on EEG-defined sleep of acute restoration of l-3,3'5-triiodothyronine (T3) to a sleep-regulatory brain region, the preoptic region, was examined in hypothyroid rats. Sleep parameters were monitored for 48 h weekly: for 24 h immediately following a control microinjection and for an additional 24h after a second microinjection including a T3 dose to the preoptic region or lateral ventricle. Male albino rats were implanted with EEG and EMG electrodes, abdominal temperature/activity transponders and unilateral lateral ventricle cannulae or bilateral preoptic region cannulae, and were given 0.02% n-propythiouracil (PTU) in their drinking water for 4 weeks. For histologically-confirmed bilateral preoptic region cannula placements (N=7), effects of T3 (especially a 3 µg dose) were apparent within 10h of injection as decreases in REM, NREM and total sleep and increases in waking and activity. Minimal effects of lateral ventricle T3 microinjection were demonstrated (N=5). Significant effects due to the time of day on the experimental measures were seen in both lateral ventricle and preoptic region groups, but these effects did not interact with the effect of administered hormone dose. These effects of T3 microinjection to the preoptic region were demonstrated after acute injections and within hours of injection rather than after chronic administration over days.


Subject(s)
Body Temperature/drug effects , Hypothyroidism/complications , Movement Disorders/drug therapy , Preoptic Area/drug effects , Sleep Wake Disorders/drug therapy , Triiodothyronine/therapeutic use , Analysis of Variance , Animals , Disease Models, Animal , Electroencephalography , Electromyography , Hypothyroidism/drug therapy , Hypothyroidism/etiology , Male , Microinjections , Movement Disorders/etiology , Preoptic Area/physiology , Rats , Rats, Sprague-Dawley , Sleep Wake Disorders/etiology , Time Factors
7.
Brain Res ; 1516: 45-54, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23348377

ABSTRACT

In adult brain tissue, thyroid hormones are known to have multiple effects which are not mediated by chronic influences of the hormones on heterodimeric thyroid hormone nuclear receptors. Previous work has shown that acute microinjections of l-triiodothyronine (T3) to the preoptic region significantly influence EEG-defined sleep in hypothyroid rats. The current study examined the effects of similar microinjections in euthyroid rats. In 7 rats with histologically confirmed microinjection sites bilaterally placed in the preoptic region, slow-wave sleep time was significantly decreased, but REM and waking were increased as compared to vehicle-injected controls. The EEG-defined parameters were significantly influenced by the microinjections in a biphasic dose-response relationship; the lowest (0.3µg) and highest (10µg) doses tested were without significant effect while intermediate doses (1 and 3µg) induced significant differences from controls. There were significant diurnal variations in the measures, yet no significant interactions between the effect of hormone and time of day were demonstrated. Core body temperature was not significantly altered in the current study. The demonstration of effects of T3 within hours instead of days is consistent with a rapid mechanism of action such as a direct influence on neurotransmission. Since the T3-mediated effects were robust in the current work, euthyroid rats retain thyroid hormone sensitivity which would be needed if sleep-regulatory mechanisms in the preoptic region are continuously modulated by the hormones. This article is part of a Special Issue entitled LInked: BRES-D-12-01552 & BRES-D-12-01363R2.


Subject(s)
Hypothyroidism/physiopathology , Motor Activity/drug effects , Preoptic Area/drug effects , Sleep Stages/drug effects , Triiodothyronine/pharmacology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Electroencephalography , Electromyography , Hypothyroidism/drug therapy , Male , Motor Activity/physiology , Preoptic Area/physiology , Rats , Rats, Sprague-Dawley , Thyroid Gland/surgery , Time Factors , Triiodothyronine/therapeutic use , Wakefulness/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...