Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793329

ABSTRACT

The precipitation-hardenable nickel-based superalloy Rene 41 exhibits remarkable mechanical characteristics and high corrosion resistance at high temperatures, properties that allow it to be used in high-end applications. This research paper presents findings on the influence of thermal shocks on its microstructure, hardness, and thermal diffusivity at temperatures between 700 and 1000 °C. Solar energy was used for cyclic thermal shock tests. The samples were characterized using microhardness measurements, optical microscopic analysis, scanning electron microscopy coupled with EDS elemental chemical analysis, X-ray diffraction, and flash thermal diffusivity measurements. Structural transformations and the variation of properties were observed with an increase in the number of shocks applied at the same temperature and with temperature variation for the same number of thermal shocks.

2.
Materials (Basel) ; 16(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834554

ABSTRACT

Nowadays, nanotechnology offers opportunities to create new features and functions of emerging materials. Correlation studies of nanostructured materials' development processes with morphology, structure, and properties represent one of the most important topics today due to potential applications in all fields: chemistry, mechanics, electronics, optics, medicine, food, or defense. Our research was motivated by the fact that in the nanometric domain, the crystalline structure and morphology are determined by the elaboration mechanism. The objective of this paper is to provide an introduction to the fundamentals of nanotechnology and nanopowder production using the sun's energy. Solar energy, as part of renewable energy sources, is one of the sources that remain to be exploited in the future. The basic principle involved in the production of nanopowders consists of the use of a solar energy reactor concentrated on sintered targets made of commercial micropowders. As part of our study, for the first time, we report the solar ablation synthesis and characterization of Ni-doped ZnO performed in the CNRS-PROMES laboratory, UPR 8521, a member of the CNRS (French National Centre for Scientific Research). Also, we study the effect of the elaboration method on structural and morphological characteristics of pure and doped ZnO nanoparticles determined by XRD, SEM, and UV-Vis.

3.
Materials (Basel) ; 16(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569960

ABSTRACT

This paper presents research on the degradation processes of the fresco painting in the cave church of Corbii de Piatra Hermitage under the influence of meteoric infiltration water and environmental factors. The medieval fresco dates from the end of the 13th century and the beginning of the 14th century, being painted on a sandstone wall. The infiltration of meteoric water through this wall, the temperature variations, the environment and the repeated wetting/drying processes determined the degradation of the fresco, resulting in its detachment from large surfaces. This research established correlations between the processes that take place, the structural transformations, the changes in composition and the adhesion of the fresco to the sandstone wall. The results have been made available to conservation and restoration specialists, in order to choose appropriate materials and technologies. This paper presents findings regarding the pictorial material and introduces new analysis techniques in research on the degradation processes of the fresco painting in the cave church of Corbii de Piatra Hermitage under the influence of meteoric infiltration water and environmental factors.

4.
J Fungi (Basel) ; 7(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204787

ABSTRACT

Hericium erinaceus (H. erinaceus) is a rare and appreciated fungal species belonging to the division Basidiomycota used for centuries in traditional Chinese medicine for its medicinal value. This species of mushrooms brings the most diverse benefits for the human body, and can have beneficial effects for treating Alzheimer's disease (AD). This study investigated whether ethanolic extract from the fungal biomass of H. erinaceus enhances cognitive function via the action on cholinergic neurons using the scopolamine (SCOP)-induced zebrafish (Danio rerio) model of memory impairment. The ethanolic extract from the fungal biomass of H. erinaceus was previously obtained using an ultrasonic extraction method (UE). The administration of H. erinaceus extract to zebrafish, with a pattern of AD induced by scopolamine, showed an improvement in memory evaluated by behavioral and biochemical tests on brain tissue. These results suggest that H. erinaceus has preventive and therapeutic potentials in managing memory deficits and brain oxidative stress in zebrafish with AD.

5.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198639

ABSTRACT

This scientific research focused on the production of hydroethanolic extract of the plant species Lycopodium selago L. (L. selago) by the ultrasound-assisted extraction (USAE) and the identification of biocompounds with high antioxidant activity is of interest for possible phytotherapeutic treatment against Alzheimer's disease (AD). The extract was phytochemically analyzed to investigate polyphenols, flavonoids, and identify the sesquiterpenoid alkaloid huperzine A (HupA), which is known in the literature for its great relevance in AD. Evaluation and comparison of the antioxidant activity of the extract were performed by four complementary spectrophotometric methods (DPPH, FRAP, ABTS, ORAC). In vitro tests of the extract showed an excellent reciprocal link between the concentration of polyphenols and the measurement of the antioxidant activity of the extract with the sesquiterpenoid HupA. To confirm the antioxidant activity, L. selago hydroethanolic extract was administered in vivo to zebrafish (Danio rerio) with a pattern of scopolamine-induced cognitive impairment. Moreover, this study explored a possible correlation between the expression of oxidative stress markers in the brain tissue with the behavior of the scopolamine zebrafish model. In vivo tests showed that this fern could be used as a nutritional supply and as a phytotherapeutic method to prevent or treat various neurodegenerative diseases that call for high-nutritive-value medications.

6.
Foods ; 9(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352839

ABSTRACT

Hericium erinaceus is a medicinal fungal species that produces the active biological metabolite erinacine A with strong antioxidant activity. The classical extraction techniques used to date to obtain metabolites from this fungal species require high consumption of resources and energy and, in the end, prove to be expensive and inefficient, especially on a biomedical scale. The aim of this research is based on the development of an ultrasonic extraction (UE) method for the identification and extraction of biological compounds with high antioxidant activity from the mycelia of H. erinaceus biomass developed through a solid cultivation process. The extraction process was optimized by varying parameters to determine the best extraction yield of metabolites involved in such antioxidant activity, using the response surface methodology (RSM). The physicochemical analyses were oriented towards the investigation of polyphenols, flavonoids, and the diterpenoid erinacine A. It is highlighted that there is a very good mutual connection between the concentration of polyphenols and flavonoids in the extracts studied and the diterpenoid erinacine A. Also, this study describes an efficient and qualitative extraction method for extracting natural antioxidants from the H. erinaceus mushroom, since toxic solvents were not used in the developed extraction procedure. This biomass can be used both as a food source and as a possible phytotherapeutic tool in the prevention or treatment of various neurodegenerative disorders that require drugs with strong antioxidant activity.

7.
JMIR Mhealth Uhealth ; 8(4): e10733, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32234707

ABSTRACT

BACKGROUND: Sleep disorders are a major public health issue. Nearly 1 in 2 people experience sleep disturbances during their lifetime, with a potential harmful impact on well-being and physical and mental health. OBJECTIVE: The aim of this study was to better understand the clinical applications of wearable-based sleep monitoring; therefore, we conducted a review of the literature, including feasibility studies and clinical trials on this topic. METHODS: We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and the Web of Science through June 2019. We created the list of keywords based on 2 domains: wearables and sleep. The primary selection criterion was the reporting of clinical trials using wearable devices for sleep recording in adults. RESULTS: The initial search identified 645 articles; 19 articles meeting the inclusion criteria were included in the final analysis. In all, 4 categories of the selected articles appeared. Of the 19 studies in this review, 58 % (11/19) were comparison studies with the gold standard, 21% (4/19) were feasibility studies, 15% (3/19) were population comparison studies, and 5% (1/19) assessed the impact of sleep disorders in the clinic. The samples were heterogeneous in size, ranging from 1 to 15,839 patients. Our review shows that mobile-health (mHealth) wearable-based sleep monitoring is feasible. However, we identified some major limitations to the reliability of wearable-based monitoring methods compared with polysomnography. CONCLUSIONS: This review showed that wearables provide acceptable sleep monitoring but with poor reliability. However, wearable mHealth devices appear to be promising tools for ecological monitoring.


Subject(s)
Polysomnography , Sleep , Telemedicine , Wearable Electronic Devices , Adolescent , Adult , Humans , Reproducibility of Results
8.
Materials (Basel) ; 9(1)2016 Jan 13.
Article in English | MEDLINE | ID: mdl-28787846

ABSTRACT

We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN) films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility.

9.
J Nanosci Nanotechnol ; 12(11): 8746-50, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23421278

ABSTRACT

Titanium dioxide exists in three crystalline phases: anatase, rutile and brookite. Although rutile is thermodynamically more stable, anatase is considered as the most favorable phase for photocatalysis and solar energy conversion. Recent studies have shown a significant improvement of light harvesting and overall solar conversion efficiency of anatase nanoparticles in dye-sensitized solar cells (DSSCs) when using a mixture of anatase and rutile phases (10-15% rutile). TiO2 nanopowders have been prepared by a solar physical vapor deposition process (SPVD). This method has been developed in Odeillo-Font Romeu France using "heliotron" solar reactors working under concentrated sunlight in 2 kW solar furnaces. By controlling reactor's atmosphere type (air/argon) and gas pressure, several types of anatase/rutile nanophases have been obtained with slightly different microstructural properties and morphological characteristics. X-ray diffraction analyses (XRD) were performed on precursor and on the SPVD obtained nanopowders. Information concerning their phase composition and coherence diffraction domain (crystallites size and strain) was obtained. Nanopowders morphology has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Solar Energy , Titanium/chemistry , Equipment Design , Equipment Failure Analysis , Gases/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...