Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 126(40): 12977-83, 2004 Oct 13.
Article in English | MEDLINE | ID: mdl-15469295

ABSTRACT

Using a methodology recently developed for studying the product distributions of gas-phase S(N)2 and E2 reactions, the effect of the leaving group on the reaction rate and branching ratio was investigated. Using a dianion as the nucleophile, reactions with a series of alkyl bromides, iodides, and trifluoroacetates were examined. The alkyl groups in the study are ethyl, n-propyl, n-butyl, isobutyl, isopropyl, sec-butyl, and tert-butyl. The data indicate that leaving group abilities are directly related to the exothermicities of the reaction processes in both the gas phase and the condensed phase. Gas-phase data give a reactivity order of iodide > trifluoroacetate > bromide for S(N)2 and E2 reactions. Previous condensed phase data indicate a reactivity order of iodide > bromide > trifluoroacetate for substitution reactions; however, the basicities of bromide and trifluoroacetate are reversed in the condensed phase so this reactivity pattern does reflect the relative reaction exothermicities. Aside from this variation, the gas-phase data parallel condensed phase data indicating that the substituent effects are rooted in the nature of the alkyl substrate rather than in differences in solvation. The experimental data are supported by calculations at the MP2/6-311+G(d,p)//MP2/6-31+(d) level.

2.
J Org Chem ; 68(17): 6484-8, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12919007

ABSTRACT

DFT calculations were performed to determine the effects of ethereal solvents on the aggregation state of lithium dialkylaminoborohydrides (LABs). The calculations included dimerization energies in the gas phase, with continuum solvation only, microsolvation with coordinating ethereal ligands, and a combination of the microsolvation and continuum models. The continuum model alone overestimates the stability of the dimers, apparently due to the lack of steric effects from the coordinating ethereal ligands. The use of the combined microsolvation and continuum solvation models predicts lithium dimethylaminoborohydride to be a mixture of monomer and dimer in THF, and more sterically hindered lithium aminoborohydrides to exist primarily as monomers. The kinetics of amination of 1-chlorodecane by lithium dimethylaminoborohydride showed no detectable change in reaction rate with time, suggesting that the LAB reagent may exist primarily as a monomer in THF.

SELECTION OF CITATIONS
SEARCH DETAIL
...