Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 178(3): 1011-1026, 2018 11.
Article in English | MEDLINE | ID: mdl-30185440

ABSTRACT

The interaction between mannan polysaccharides and cellulose microfibrils contributes to cell wall properties in some vascular plants, but the molecular arrangement of mannan in the cell wall and the nature of the molecular bonding between mannan and cellulose remain unknown. Previous studies have shown that mannan is important in maintaining Arabidopsis (Arabidopsis thaliana) seed mucilage architecture, and that Cellulose Synthase-Like A2 (CSLA2) synthesizes a glucomannan backbone, which Mannan α-Galactosyl Transferase1 (MAGT1/GlycosylTransferase-Like6/Mucilage Related10) might decorate with single α-Gal branches. Here, we investigated the ratio and sequence of Man and Glc and the arrangement of Gal residues in Arabidopsis mucilage mannan using enzyme sequential digestion, carbohydrate gel electrophoresis, and mass spectrometry. We found that seed mucilage galactoglucomannan has a backbone consisting of the repeating disaccharide [4)-ß-Glc-(1,4)-ß-Man-(1,], and most of the Man residues in the backbone are substituted by single α-1,6-Gal. CSLA2 is responsible for the synthesis of this patterned glucomannan backbone and MAGT1 catalyses the addition of α-Gal. In vitro activity assays revealed that MAGT1 transferred α-Gal from UDP-Gal only to Man residues within the CSLA2 patterned glucomannan backbone acceptor. These results indicate that CSLAs and galactosyltransferases are able to make precisely defined galactoglucomannan structures. Molecular dynamics simulations suggested this patterned galactoglucomannan is able to bind stably to some hydrophilic faces and to hydrophobic faces of cellulose microfibrils. A specialization of the biosynthetic machinery to make galactoglucomannan with a patterned structure may therefore regulate the mode of binding of this hemicellulose to cellulose fibrils.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cellulose/metabolism , Galactosyltransferases/metabolism , Glucosyltransferases/metabolism , Glycosyltransferases/metabolism , Mannans/chemistry , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Galactosyltransferases/genetics , Glucosyltransferases/genetics , Glycosyltransferases/genetics , Mannans/metabolism , Plant Mucilage/chemistry , Plant Mucilage/metabolism , Polysaccharides/metabolism , Seeds/chemistry , Seeds/enzymology , Seeds/genetics
2.
J Biol Res (Thessalon) ; 25: 15, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30116723

ABSTRACT

BACKGROUND: The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. RESULTS: Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3-6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGN cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. CONCLUSIONS: These findings suggest that the secretory apparatus of resting gland cells is "overbuilt" to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.

3.
JACC Basic Transl Sci ; 2(5): 561-574, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30062170

ABSTRACT

Low-density lipoprotein receptor-related protein-1 (LRP1) is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure-activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16). SP16 induced a >50% reduction in infarct size (p < 0.001) and preservation of left ventricular systolic function (p < 0.001), and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function.

4.
PLoS One ; 9(2): e86745, 2014.
Article in English | MEDLINE | ID: mdl-24586253

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKß component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKß component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKß in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKß function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKß function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKß for VEEV replication, we over-expressed IKKß in cells and observed an increase in viral titers. In contrast, studies carried out using IKKß(-/-) cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKß may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKß protein may be critically involved in VEEV replication.


Subject(s)
Encephalitis Virus, Venezuelan Equine/physiology , Encephalomyelitis, Venezuelan Equine/metabolism , I-kappa B Kinase/metabolism , Animals , Cell Line , Down-Regulation/drug effects , Encephalomyelitis, Venezuelan Equine/pathology , Guinea Pigs , Host-Pathogen Interactions , Humans , Mice , NF-kappa B/metabolism , Neurons/virology , Nitriles/pharmacology , Signal Transduction/drug effects , Sulfones/pharmacology , Viral Load/drug effects , Viral Proteins/metabolism , Virus Replication/drug effects
5.
Methods ; 39(2): 154-62, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16854591

ABSTRACT

A primary goal of cell biology is to uncover the mechanisms of cellular processes. A detailed structural understanding of the organelles and subcellular structures involved in these processes has often formed the foundation for the elucidation of their function. Electron tomography is a powerful technique for characterizing subcellular architecture and structural details in three dimensions. Electron tomography of cryofixed, freeze-substituted, and plastic-embedded samples allows three-dimensional visualization and display of dynamic, pleiomorphic structures at a resolution of approximately 7 nm in cell volumes up to approximately 25 microm(3). In this review, we describe the electron tomography protocols that we have employed to determine the 3D architecture of complex cellular structures, thereby gaining insights into their functional organization. We stress the need for studying specimens preserved by cryofixation methods to obtain accurate information on the geometry and size of cellular structures. We also discuss some of the challenges associated with the staining of certain types of membranes. Finally, we provide examples of how tomographic data can be analyzed, dissected, and displayed using the tools built into the IMOD software package.


Subject(s)
Cell Membrane Structures/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Image Processing, Computer-Assisted/methods , Tomography/methods , Cell Size , Computers , Cryopreservation , Electrons , Intracellular Membranes/ultrastructure , Microscopy/instrumentation , Microscopy/methods
6.
Curr Opin Cell Biol ; 18(4): 438-43, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16781854

ABSTRACT

Enormous insights into Golgi function have been provided by yeast genetics, biochemical assays and immuno-labeling methods and the emerging picture is of a very complex organelle with multiple levels of regulation. Despite many elegant experimental approaches, it remains unclear what mechanisms transport secretory proteins and lipids through the Golgi, and even the basic structure of the organelle is debated. Recently, new, global approaches such as proteomics and functional genomics have been applied to study the Golgi and its matrix. The data produced reveals great complexity and has potential to help address major unresolved questions concerning Golgi function.


Subject(s)
Golgi Apparatus/physiology , Animals , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Lipids/physiology , Protein Transport , Proteins/metabolism
7.
Traffic ; 5(5): 338-45, 2004 May.
Article in English | MEDLINE | ID: mdl-15086783

ABSTRACT

3D electron tomography studies of the structure of the mammalian Golgi complex have led to four functional predictions (1). The sorting and exit site from the Golgi comprises two or three distinct trans-cisternae (2). The docking of vesicular-tubular clusters at the cis-face and the fragmentation of trans-cisternae are coordinated (3). The mechanisms of transport through, and exit from, the Golgi vary with physiological state, and in different cells and tissues (4). Specialized trans-ER functions in the delivery of ceramide to sphingomyelin synthase in the trans-Golgi membrane, for the regulated sorting via sphingolipid-cholesterol-rich domains. These structure-based predictions can now be tested using a variety of powerful cell and molecular tools.


Subject(s)
Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Animals , Golgi Apparatus/chemistry , Mammals , Microscopy, Electron, Scanning , Models, Molecular , Tomography, X-Ray Computed
8.
Mol Biol Cell ; 15(6): 2907-19, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15047867

ABSTRACT

The Golgi complex functions to posttranslationally modify newly synthesized proteins and lipids and to sort them to their sites of function. In this study, a stacked Golgi fraction was isolated by classical cell fractionation, and the protein complement (the Golgi proteome) was characterized using multidimensional protein identification technology. Many of the proteins identified are known residents of the Golgi, and 64% of these are predicted transmembrane proteins. Proteins localized to other organelles also were identified, strengthening reports of functional interfacing between the Golgi and the endoplasmic reticulum and cytoskeleton. Importantly, 41 proteins of unknown function were identified. Two were selected for further analysis, and Golgi localization was confirmed. One of these, a putative methyltransferase, was shown to be arginine dimethylated, and upon further proteomic analysis, arginine dimethylation was identified on 18 total proteins in the Golgi proteome. This survey illustrates the utility of proteomics in the discovery of novel organellar functions and resulted in 1) a protein profile of an enriched Golgi fraction; 2) identification of 41 previously uncharacterized proteins, two with confirmed Golgi localization; 3) the identification of arginine dimethylated residues in Golgi proteins; and 4) a confirmation of methyltransferase activity within the Golgi fraction.


Subject(s)
Arginine/metabolism , Golgi Apparatus/metabolism , Proteomics , Amino Acid Sequence , Animals , Cell Fractionation , Endoplasmic Reticulum/metabolism , Gene Expression Profiling , Methylation , Molecular Sequence Data , Protein Transport , Proteins/analysis , Proteins/chemistry , Proteins/metabolism , Rats
9.
Mol Biol Cell ; 14(6): 2277-91, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12808029

ABSTRACT

The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.


Subject(s)
Golgi Apparatus/metabolism , Pichia/metabolism , Cryopreservation , Endoplasmic Reticulum/metabolism , Golgi Apparatus/ultrastructure , Models, Biological , Pichia/ultrastructure , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...