Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900293

ABSTRACT

In clinical routine, the quality of whole-slide images plays a key role in the pathologist's diagnosis, and suboptimal staining may be a limiting factor. The stain normalization process helps to solve this problem through the standardization of color appearance of a source image with respect to a target image with optimal chromatic features. The analysis is focused on the evaluation of the following parameters assessed by two experts on original and normalized slides: (i) perceived color quality, (ii) diagnosis for the patient, (iii) diagnostic confidence and (iv) time required for diagnosis. Results show a statistically significant increase in color quality in the normalized images for both experts (p < 0.0001). Regarding prostate cancer assessment, the average times for diagnosis are significantly lower for normalized images than original ones (first expert: 69.9 s vs. 77.9 s with p < 0.0001; second expert: 37.4 s vs. 52.7 s with p < 0.0001), and at the same time, a statistically significant increase in diagnostic confidence is proven. The improvement of poor-quality images and greater clarity of diagnostically important details in normalized slides demonstrate the potential of stain normalization in the routine practice of prostate cancer assessment.

2.
J Pathol Inform ; 13: 100145, 2022.
Article in English | MEDLINE | ID: mdl-36268060

ABSTRACT

In digital pathology, the final appearance of digitized images is affected by several factors, resulting in stain color and intensity variation. Stain normalization is an innovative solution to overcome stain variability. However, the validation of color normalization tools has been assessed only from a quantitative perspective, through the computation of similarity metrics between the original and normalized images. To the best of our knowledge, no works investigate the impact of normalization on the pathologist's evaluation. The objective of this paper is to propose a multi-tissue (i.e., breast, colon, liver, lung, and prostate) and multi-center qualitative analysis of a stain normalization tool with the involvement of pathologists with different years of experience. Two qualitative studies were carried out for this purpose: (i) a first study focused on the analysis of the perceived image quality and absence of significant image artifacts after the normalization process; (ii) a second study focused on the clinical score of the normalized image with respect to the original one. The results of the first study prove the high quality of the normalized image with a low impact artifact generation, while the second study demonstrates the superiority of the normalized image with respect to the original one in clinical practice. The normalization process can help both to reduce variability due to tissue staining procedures and facilitate the pathologist in the histological examination. The experimental results obtained in this work are encouraging and can justify the use of a stain normalization tool in clinical routine.

3.
Comput Med Imaging Graph ; 90: 101930, 2021 06.
Article in English | MEDLINE | ID: mdl-33964790

ABSTRACT

In kidney transplantations, pathologists evaluate the architecture of both glomeruli, interstitium and tubules to assess the nephron status. An accurate assessment of glomerulosclerosis and tubular atrophy is crucial for determining kidney acceptance, which is currently based on the pathologists' histological evaluations on renal biopsies in addition to clinical data. In this work, we present an automated algorithm, called RENTAG (Robust EvaluatioN of Tubular Atrophy & Glomerulosclerosis), for the segmentation and classification of glomerular and tubular structures in histopathological images. The proposed novel strategy combines the accuracy of a level-set with the semantic segmentation of convolutional neural networks to detect the glomeruli and tubules contours. In the TEST set, our method exhibited excellent performance in both glomeruli (dice score: 0.9529) and tubule (dice score: 0.9174) detection and outperformed all the compared methods. To the best of our knowledge, the RENTAG algorithm is the first fully automated method capable of quantifying glomerulosclerosis and tubular atrophy in digital histological images. The developed software can be employed for the analysis of pre-transplantation biopsies to support the pathologists' diagnostic activity.


Subject(s)
Deep Learning , Algorithms , Atrophy/pathology , Humans , Image Processing, Computer-Assisted , Kidney , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...