Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10508, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714808

ABSTRACT

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Subject(s)
Agar , Fibroins , Hydrogels , Nanocomposites , Tragacanth , Fibroins/chemistry , Humans , Hydrogels/chemistry , Agar/chemistry , Nanocomposites/chemistry , Tragacanth/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , HEK293 Cells , Zinc/chemistry , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Microbial Sensitivity Tests , MCF-7 Cells , Cell Line, Tumor
2.
Inorg Chem ; 62(51): 21156-21163, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38096807

ABSTRACT

The use of metal-organic frameworks (MOFs) as catalysts is reported in various industrial applications. In contrast to monometallic MOFs, heterometallic MOFs with mixed organic ligands showed enhanced catalytic properties. The catalytic properties of heterometallic MOFs can be enhanced by generating defects and the synergistic effect between the two heterometals at secondary building units. By using a solvothermal technique, a Cd-Zn heterometallic MOF with a new morphology, [Cd2Zn(DPTTZ)0.5(OBA)3(H2O)(HCOOH)] (IUST-4) [DPTTZ = 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole, OBA = 4,4'-oxybis(benzoic acid)], was synthesized via a mixed-ligand strategy and characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. X-ray crystallographic analysis showed that IUST-4 is a neutral 3D metal-organic framework crystallized in the monoclinic system with space group C2/c. In this study, the catalytic properties of IUST-4 for the epoxidation of cyclooctene were investigated. IUST-4 was selected as the optimal catalyst for epoxy product production due to its high selectivity and yield. Moreover, the catalytic performance of IUST-4 was maintained despite five recycling cycles without significant degradation. The epoxidation of cyclooctene with IUST-4 has several advantages, including good selectivity, easy recovery, and short-time reaction.

3.
Sci Rep ; 13(1): 19891, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964001

ABSTRACT

The excessive release of greenhouse gases, especially carbon dioxide (CO2) pollution, has resulted in significant environmental problems all over the world. CO2 capture technologies offer a very effective means of combating global warming, climate change, and promoting sustainable economic growth. In this work, UiO-66-NH2 was synthesized by the novel sonochemical method in only one hour. This material was characterized through PXRD, FT-IR, FE-SEM, EDX, BET, and TGA methods. The CO2 capture potential of the presented material was investigated through the analysis of gas isotherms under varying pressure conditions, encompassing both low and high-pressure regions. Remarkably, this adsorbent manifested a notable augmentation in CO2 adsorption capacity (3.2 mmol/g), achieving an approximate enhancement of 0.9 mmol/g, when compared to conventional solvothermal techniques (2.3 mmol/g) at 25 °C and 1 bar. To accurately represent the experimental findings, three isotherm, and kinetic models were used to fit the experimental data in which the Langmuir model and the Elovich model exhibited the best fit with R2 values of 0.999 and 0.981, respectively. Isosteric heat evaluation showed values higher than 80 kJ/mol which indicates chemisorption between the adsorbent surface and the adsorbate. Furthermore, the selectivity of the adsorbent was examined using the Ideal Adsorbed Solution Theory (IAST), which showed a high value of 202 towards CO2 adsorption under simulated flue gas conditions. To evaluate the durability and performance of the material over consecutive adsorption-desorption processes, cyclic tests were conducted. Interestingly, these tests demonstrated only 0.6 mmol/g capacity decrease for sonochemical UiO-66-NH2 throughout 8 consecutive cycles.

4.
Sci Rep ; 13(1): 16584, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789062

ABSTRACT

A novel catalyst was fabricated in this study based on zirconium MOF modified with pyridine carboxaldehyde in a solvothermal reaction, embedded with cerium. In order to confirm the catalyst structure, various characterization techniques, including FTIR, Far IR, EDX, XRD, TGA, FE-SEM, ICP, and BET analyses, were employed. The results indicated that the UiO-66-Pyca-Ce (III) catalyst had a Langmuir surface area of 501.63 m2/g, a pore volume of 0.28 cm3/g, and a pore size of 2.27 nm. To study catalytic activity, a sequential approach of Knoevenagel condensation and Michael addition was used to synthesize various polyhydroquinoline derivatives. The reaction took place at ambient temperature. The UiO-66-Pyca-Ce (III) catalyst demonstrated high efficacy (90%) and reusability in asymmetric synthesis of polyhydroquinoline derivatives for several reasons, including the possession of three Lewis acid activation functions.

5.
Sci Rep ; 13(1): 15391, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37717066

ABSTRACT

Selective epoxidation of olefins is of high interest in the chemical industry due to the many applications of epoxides. This study reports on the synthesis of Cd-MOF, [Cd(DPTTZ)(5-AIP)] (IUST-1) (where DPTTZ = 2, 5-di (pyridine-4-yl) thiazolo [5, 4-d] thiazole, 5-AIP = 5-Aminoisophthalic acid), by a reflux method, which can be considered as a fast and simple process. The morphology and structure of the synthesized IUST-1 were determined by using FE-SEM (Field Emission Scanning Electron Microscopy), EDX (Energy Dispersive Analysis of X-ray), Mapping (Elemental Mapping), CHNS (Elemental analysis), XRD (X-Ray Diffraction), FT-IR (Fourier Transform Infrared), and TGA (Thermo Gravimetric Analysis). The epoxidation of cyclooctene was investigated using the activity of catalytic IUST-1. The results showed that in the presence of tert-butyl hydroperoxide and CCl4 in a 1:2 alkene/oxidant ratio, a high epoxide yield (99.8%) was obtained. In addition, IUST-1 can be easily separated by simple filtration and recycled five times successfully with a slight decrease in activity. This compound has some advantages such as high yield, short reaction time, and ease of reuse, which make it a suitable heterogeneous catalyst for the epoxidation of cyclooctene.

6.
ACS Appl Mater Interfaces ; 15(3): 4021-4032, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36633596

ABSTRACT

Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as a catalyst in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties for the epoxidation of olefins, we report a general approach to synthesizing MOF thin films (UiO-66-Sal-Cu(OH)2). Using the postsynthesis method (PSM), UiO-66-NH2 was functionalized with salicylaldehyde and entrapped on copper hydroxide nanoparticle surfaces using a modern strategy (MOF thin film). We used field-emission scanning electron microscopy (FE-SEM), EDX (energy-dispersive X-ray analysis), XRD (X-ray diffraction), FT-IR (Fourier transform infrared), BET (Brunauer-Emmett-Teller), TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and ICP-MS (inductively coupled plasma mass spectrometry) to determine the structure and morphology of the synthesized UiO-66-Sal-Cu(OH)2. The oxidation of cyclooctene by the UiO-66-Sal-Cu(OH)2 thin film was studied. Due to its advantages, such as being environmentally friendly (base metal-loaded catalyst, room temperature, solvent-free reaction), reusability, and high yield, this compound can be an appropriate catalyst for the oxidation of olefins.

SELECTION OF CITATIONS
SEARCH DETAIL
...