Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968389

ABSTRACT

Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work, we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalizations to better understand how simple modifications can be used to reduce the nonspecific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types nonspecifically degraded peptides as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 h, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with the cells. We found that simple modifications to the termini could significantly reduce or completely abolish nonspecific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed nonspecific degradation. We also found that there were minimal differences in peptide degradation across cell donors and that sequences mimicking different peptides commonly used to functionalize biomaterials all had significant nonspecific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.

2.
bioRxiv ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38712239

ABSTRACT

Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalization to better understand how simple modifications can be used to reduce non-specific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types non-specifically degraded peptide as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 hours, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with cells. We found that simple modifications to the termini could significantly reduce or completely abolish non-specific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed non-specific degradation. We also found that there were minimal differences across cell donors, and that sequences mimicking different peptides commonly-used to functionalized biomaterials all had significant non-specific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.

3.
ACS Appl Bio Mater ; 4(5): 4049-4070, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006822

ABSTRACT

Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique's promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.


Subject(s)
Biocompatible Materials/chemistry , Ink , Printing, Three-Dimensional , Regenerative Medicine , Stem Cells/chemistry , Extracellular Matrix/chemistry , Humans , Materials Testing , Particle Size , Peptides/chemistry , Polymers/chemistry , Tissue Scaffolds/chemistry
4.
Nanomedicine (Lond) ; 12(19): 2403-2422, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28868968

ABSTRACT

Skin is the outermost covering of the human body and at the same time the largest organ comprising 15% of body weight and 2 m2 surface area. Skin plays a key role as a barrier against the outer environment depending on its thickness, color and structure, which differ from one site to another. The four major types of problematic wounds include ulcers (diabetic, venous, pressure) and burn wounds. Developing novel dressings helps us to improve the wound healing process in difficult patients. Recent advances in regenerative medicine and nanotechnology are revolutionizing the field of wound healing. Antimicrobial activity, exogenous cell therapy, growth factor delivery, biodegradable and biocompatible matrix construction, all play a role in hi-tech dressing design. In the present review, we discuss how the principles of regenerative medicine and nanotechnology can be combined in innovative wound dressings.


Subject(s)
Bandages , Nanomedicine/methods , Regenerative Medicine/methods , Wound Healing/drug effects , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell- and Tissue-Based Therapy/methods , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Skin , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...