Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 107: 102453, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959559

ABSTRACT

INTRODUCTION: This study explored how acute sleep deprivation (ASD) before myocardial ischemia influences oxytocin release from paraventricular (PVN) neurons and its correlation with sympathetic nervous system (SNS) activity post-acute sleep loss, impacting subsequent left ventricular (LV) remodeling following myocardial infarction (MI). METHODS: The study was conducted in two phases: induction of ASD, inducing MI, blood sampling, euthanizing animals and collecting their heart and brain for histological and gene expression evaluations. The animals in first and second phase were euthanized 24 h and 14 days after MI, respectively. RESULTS: Pre-MI ASD, accompanied by increased serum epinephrine levels within 24 h of MI, upregulated oxytocin and cFos expression in the PVN. Also, pre-MI ASD resulted in decreased serum PAB levels 14 days post-MI (P < 0.001). While notable echocardiographic changes were seen in MI versus sham groups, ASD demonstrated protective effects. This was evidenced by reduced infarct size, elevated TIMP1, MMP2, and MMP9 in the LV of SD + MI animals versus MI alone (P < 0.05). Additionally, histological analysis showed reduced LV fibrosis in pre-MI ASD subjects (P < 0.05). CONCLUSION: Our study supports the notion that activation of oxytocin neurons within the PVN subsequent to ASD interacts with autonomic centers in the central nervous system. This enhanced sympathetic outflow to the heart prior to MI triggers a preconditioning response, thereby mediating cardioprotection through decreased oxidative stress biomarkers and regulated extracellular matrix (ECM) turnover.

2.
Neuroimmunomodulation ; 24(4-5): 200-210, 2017.
Article in English | MEDLINE | ID: mdl-29145213

ABSTRACT

OBJECTIVE(S): We aimed to show that the immune system is sensitive to the detrimental effects of inequality and social injustice, and splenic vulnerability to apoptosis may also increase. METHODS: In order of better determination of immune responses to chronic social stress, we implemented food deprivation, food intake inequality, and unstable social status (a change of cage-mate every 3 days) for a period of 14 days in 60 male Balb/c mice. At the end of this stress period, nitric oxide (NO) production by peritoneal adherent cells and the serum concentration of corticosterone were measured. Moreover, the viability of peritoneal adherent cells and spleen lymphocytes was evaluated by MTT assay. The terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was done to reveal the TUNEL-reactive apoptotic bodies in the spleen. RESULTS: Our results showed that food deprivation and inequality caused significant changes in the apoptosis of splenic cells in comparison with the control group (p < 0.05). Moreover, the vital activities of lymphocytes and peritoneal adherent cells, as well as NO production by the latter, increased significantly (p < 0.05). However, the experience of unstable social status did not cause a further increase in the viability of lymphocytes and peritoneal adherent cells, or NO production in animals that were food-deprived or experienced inequality. Serum concentration of corticosterone in all experimental groups, except for animals that experienced unstable social status only, significantly decreased versus the control group (p < 0.05). CONCLUSIONS: The results suggest that poverty and social inequality, but not unstable social status, affect immune responses and are likely involved in the induction of splenic apoptosis in mice.


Subject(s)
Apoptosis/immunology , Food Deprivation/physiology , Immunity, Cellular/immunology , Social Behavior , Spleen/immunology , Animals , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Socioeconomic Factors , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...