Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Sci Technol (Tehran) ; 18(12): 3739-3746, 2021.
Article in English | MEDLINE | ID: mdl-33552192

ABSTRACT

The outbreak of SARS-CoV-2 (COVID-19) has attracted much attention to study its possible presence and airborne transmission. The possibility of COVID-19 airborne transmission in indoor environments is debatable. The present study examined the concentration of viral RNA-containing particles produced directly or indirectly by breathing or coughing of confirmed COVID-19 patients or by carriers without symptoms. Some studies do not accept this method of transmission (COVID-19 airborne transmission). The present study aimed to measure the possible exposure of health care personnel to SARS-CoV-2 particles that may have been suspended in the air to respond to the hypothesis of COVID-19 airborne transmission. Airborne particle sampling was performed using impingement method based on NIOSH (chapter BA) and ASHRAE. Selection of sampling sections was in line with the WHO guidelines. The samples were analyzed using RT-PCR technique. Based on the given results, airborne particles of COVID-19 may present in the air and affect the health of hospital personnel. In fact, the analysis of gene expression in ambient conditions and thereby aerosol transmission of SARS-CoV-2 through air is possible and may lead to occupational exposure of health care personnel. Furthermore, it was found that airborne emission of COVID-19 through the breathing zone of patients, particularly in ICU wards with confirmed cases of COVID-19, may be higher than in other ICU wards. Also, the demonstrated results showed that there is a possibility of reaerosolization (reintroduction) of previously airborne SARS-CoV-2 particles into the atmosphere due to health care personnel frequently walking between different wards and stations of ICU.

2.
Water Environ Res ; 74(5): 494-507, 2002.
Article in English | MEDLINE | ID: mdl-12469954

ABSTRACT

This paper describes the progress up to June 2000 for thermophilic digestion of wastewater sludge at the Los Angeles, California, Bureau of Sanitation's Terminal Island Treatment Plant. The development of the microorganism culture has followed a course similar to that seen at other successful plants for establishment of a stable, well-balanced thermophilic culture in a large digester, but at an accelerated pace. This study began with rapid heating, increasing the temperature of the 4500 m3 (1.2 mil. gal) digester to the target temperature of 55 degrees C at approximately 3 degrees C/d. A method of feeding to maximize the rate of culture development was used as feeding accelerated to approximately 400 m3/d (0.1 mgd). An initial rise of acid concentration (primarily acetate) was seen. Within two weeks, acid concentration declined and stabilized, indicating that acidogenic and methanogenic microbial communities came into balance. Coliform data indicate that digester disinfection was stably effective from the middle of April. The salmonella tests done to date satisfy the U.S. Environmental Protection Agency (U.S. EPA) class A specification. Testing with helminth ova and enteric viruses before and after the digester shows satisfaction of class A standard for those organisms. The present combination of low volatile fatty acids and low hydrogen sulfide is good news for odor control. The data show increases in volatile solids destruction and estimated gas production, compared with the previous mesophilic operation; however, large uncertainties have been calculated from the data. As the digester is now operating successfully at the current feed rate, there seems to be no barriers to processing the entire sludge production of the plant. Other results indicate that the U.S. EPA requirements for exceptional quality class A biosolids are likely to be achieved.


Subject(s)
Bioreactors , Sewage/chemistry , Waste Disposal, Fluid , Water Purification/methods , Animals , Enterobacteriaceae/isolation & purification , Facility Design and Construction , Fatty Acids, Volatile/analysis , Helminths/isolation & purification , Odorants , Sewage/microbiology , Temperature , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...