Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 5(9): 6925-34, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21819126

ABSTRACT

We demonstrate the water-assisted supergrowth of vertically aligned single-walled carbon-nitrogen nanotubes (SWNNTs) using a simple liquid/gas-phase precursor system. In situ characterization of gas-phase nitrogen-containing precursors and their correlation to growth identifies HCN as the most active precursor for SWNNT growth, analogous to C(2)H(2) for single-walled carbon nanotubes (SWNTs). Utilizing Raman spectroscopy, combined with XPS and in situ mass spectrometry during growth, we demonstrate the ability to probe N atoms at low concentrations (10(-5) at. % N) in the SWNNT. Additionally, we demonstrate sensitivity of SWNNT optical transitions to N-doping through absorbance measurements, which appear to be a sensitive fingerprint for SWNNT doping. Finally, we demonstrate the fabrication of SWNT/SWNNT heterojunctions in the self-assembled carpet morphology that can be printed to arbitrary host substrates and facilitate potential emerging applications for this material. This work brings together new aspects regarding the growth, characterization, and materials processing that can yield advanced material architectures involving electronically tuned SWNNT array networks.

2.
ACS Nano ; 4(2): 1131-45, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20092353

ABSTRACT

A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.


Subject(s)
Nanotubes, Carbon/chemistry , Optical Phenomena , Printing/methods , Absorption , Anisotropy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectrophotometry, Infrared , Volatilization , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...