Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 100(1-1): 012307, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499813

ABSTRACT

In this paper, we introduce a general framework for coinfection as cooperative susceptible-infected-removed (SIR) dynamics. We first solve the SIR model analytically for two symmetric cooperative contagions [L. Chen et al., Europhys. Lett. 104, 50001 (2013)10.1209/0295-5075/104/50001] and then generalize and solve the model exactly in the symmetric scenarios for three and more cooperative contagions. We calculate the transition points and order parameters, i.e., the total number of infected hosts. We show that the behavior of the system does not change qualitatively with the inclusion of more diseases. We also show analytically that there is a saddle-node-like bifurcation for two cooperative SIR dynamics and that the transition is hybrid. Moreover, we investigate where the symmetric solution is stable for initial fluctuations. We finally explore sets of parameters which give rise to asymmetric cases, namely, the asymmetric cases of primary and secondary infection rates of one pathogen with respect to another. This setting can lead to fewer infected hosts, a higher epidemic threshold, and also continuous transitions. These results open the road to a better understanding of disease ecology.

2.
Article in English | MEDLINE | ID: mdl-26382353

ABSTRACT

In this paper we consider the Bak, Tang, and Wiesenfeld (BTW) sand-pile model with local violation of conservation through annealed and quenched disorder. We have observed that the probability distribution functions of avalanches have two distinct exponents, one of which is associated with the usual BTW model and another one which we propose to belong to a new fixed point; that is, a crossover from the original BTW fixed point to a new fixed point is observed. Through field theoretic calculations, we show that such a perturbation is relevant and takes the system to a new fixed point.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051104, 2012 May.
Article in English | MEDLINE | ID: mdl-23004700

ABSTRACT

Avalanche frontiers in Abelian sandpile model (ASM) are random simple curves whose continuum limit is known to be a Schramm-Loewner evolution with diffusivity parameter κ=2. In this paper we consider the dissipative ASM and study the statistics of the avalanche and wave frontiers for various rates of dissipation. We examine the scaling behavior of a number of functions, such as the correlation length, the exponent of distribution function of loop lengths, and the gyration radius defined for waves and avalanches. We find that they do scale with the rate of dissipation. Two significant length scales are observed. For length scales much smaller than the correlation length, these curves show properties close to the critical curves, and the corresponding diffusivity parameter is nearly the same as the critical limit. We interpret this as the ultraviolet limit where κ=2 corresponding to c=-2. For length scales much larger than the correlation length, we find that the avalanche frontiers tend to self-avoiding walk, and the corresponding driving function is proportional to the Brownian motion with the diffusivity parameter κ=8/3 corresponding to a field theory with c=0. We interpret this to be the infrared limit of the theory or at least a crossover.

SELECTION OF CITATIONS
SEARCH DETAIL
...