Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0298487, 2024.
Article in English | MEDLINE | ID: mdl-38781174

ABSTRACT

Cannabis sativa (Hemp) seeds are used widely for cosmetic and therapeutic applications, and contain peptides with substantial therapeutic potential. Two key peptides, WVYY and PSLPA, extracted from hemp seed proteins were the focal points of this study. These peptides have emerged as pivotal contributors to the various biological effects of hemp seed extracts. Consistently, in the present study, the biological effects of WVYY and PSLPA were explored. We confirmed that both WVYY and PSLPA exert antioxidant and antibacterial effects and promote wound healing. We hypothesized the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in these observed effects, given that Nrf2 is reported to be a central player in the regulation of these observed effects. Molecular-level investigations unequivocally confirmed the role of the Nrf2 signaling pathway in the observed effects of WVYY and PSLPA, specifically their antioxidant effects. Our study highlights the therapeutic potential of hemp seed-derived peptides WVYY and PSLPA, particularly with respect to their antioxidant effects, and provides a nuanced understanding of their effects. Further, our findings can facilitate the investigation of targeted therapeutic applications and also underscore the broader significance of hemp extracts in biological contexts.


Subject(s)
Antioxidants , Cannabis , Keratinocytes , NF-E2-Related Factor 2 , Peptides , Seeds , Signal Transduction , NF-E2-Related Factor 2/metabolism , Cannabis/chemistry , Humans , Signal Transduction/drug effects , Seeds/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Peptides/pharmacology , Peptides/chemistry , Plant Proteins/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Plants (Basel) ; 13(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38475449

ABSTRACT

Damask roses (Rosa x damascena) are widely used in cosmetics and pharmaceutics. Here, we established an in vitro suspension cell culture for calli derived from damask rose petals. We analyzed rose suspension cell transcriptomes obtained at two different time points by RNA sequencing to reveal transcriptional changes during rose suspension cell culture. Of the 580 coding RNAs (1.3%) highly expressed in the suspension rose cells, 68 encoded cell wall-associated proteins. However, most RNAs encoded by the chloroplasts and mitochondria are not expressed. Many highly expressed coding RNAs are involved in translation, catalyzing peptide synthesis in ribosomes. Moreover, the amide metabolic process producing naturally occurring alkaloids was the most abundant metabolic process during the propagation of rose suspension cells. During rose cell propagation, coding RNAs involved in the stress response were upregulated at an early stage, while coding RNAs associated with detoxification and transmembrane transport were upregulated at the late stage. We used transcriptome analyses to reveal important biological processes and molecular mechanisms during rose suspension cell culture. Most non-coding (nc) RNAs were not expressed in the rose suspension cells, but a few ncRNAs with unknown functions were highly expressed. The expression of ncRNAs and their target coding RNAs was highly correlated. Taken together, we revealed significant biological processes and molecular mechanisms occurring during rose suspension cell culture using transcriptome analyses.

3.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38396979

ABSTRACT

Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase ß and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.


Subject(s)
Neoplasms , Transcriptome , Humans , Gallic Acid/pharmacology , Gallic Acid/metabolism , Gene Expression Profiling
4.
Plants (Basel) ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068559

ABSTRACT

The sacred lotus (Nelumbo nucifera Gaertn. Isolate Haman, in the family Nelumbonaceae) used in this study originated from the Haman region of Korea, and lotus seeds dating back to the Goryeo Dynasty (650-760 years ago) were accidentally discovered. Lotus is known to possess antioxidant, anti-inflammatory, and soothing properties. Instead of using the lotus alone, we obtained extracts using Haman region lotus-derived callus (HLC), which allowed for a controlled, quantitative, and infinite supply. Based on the reported effects of the lotus, we formulated a hypothesis to investigate the skin-whitening effect of the HLC extract (HLCE). The HLCE was first obtained by extraction with distilled water and using 5% propanediol as a solvent and subsequently verified for the whitening effect (melanin content tests) using mammalian cells in vitro. Its efficacy at the molecular level was confirmed through real-time polymerase chain reaction (PCR) using melanin-related genes. Furthermore, clinical trials with 21 volunteers confirmed the significant whitening effect of cosmetics containing the HLCE. In conclusion, we found that the HLCE not only has anti-inflammatory, antioxidant, and skin-soothing properties but also plays an essential role in skin whitening. Therefore, we propose that the HLCE has the potential to become a new raw material for the cosmetic industry.

5.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139162

ABSTRACT

Atopic dermatitis (AD) is a prevalent inflammatory skin disease characterized by epidermal barrier dysfunction and Th2-skewed inflammation. Campanula takesimana (C. takesimana), a Korean endemic plant grown on Ulleng Island, has long been associated with a traditional alternative medicine for asthma, tonsillitis, and sore throat. In this study, we reported the effect of C. takesimana callus extract on upregulating epidermal barrier-related proteins dysregulated by Th2 cytokines. C. takesimana callus extract induced the expression of skin barrier proteins, such as filaggrin, claudin-1, and zonula occludens-1, in both human primary keratinocytes and Th2-induced AD-like skin-equivalent models. Additionally, RNA sequencing analysis demonstrated that C. takesimana callus extract partially restored Th2 cytokine-induced dysregulation of the epidermal development and lipid metabolic pathways. Considering the advantages of callus as a sustainable eco-friendly source of bioactive substances, and its effect on skin barrier proteins and lipid metabolic pathways, C. takesimana callus extracts can possibly be utilized to improve the integrity of the skin barrier.


Subject(s)
Dermatitis, Atopic , Skin , Humans , Skin/metabolism , Dermatitis, Atopic/metabolism , Keratinocytes/metabolism , Cytokines/metabolism , Lipids/pharmacology
6.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446030

ABSTRACT

Roselle (Hibiscus sabdariffa L.) is a plant that has traditionally been used in various food and beverage products. Here, we investigated the potential of water extracts derived from Roselle leaves and callus cells for cosmetic and pharmaceutical purposes. We generated calluses from Roselle leaves and produced two different water extracts through heat extraction, which we named Hibiscus sabdariffa plant extract (HSPE) and Hibiscus sabdariffa callus extract (HSCE). HPLC analysis showed that the two extracts have different components, with nucleic acids and metabolites such as phenylalanine and tryptophan being the most common components in both extracts. In vitro assays demonstrated that HSCE has strong anti-melanogenic effects and functions for skin barrier and antioxidant activity. Transcriptome profiling of human skin cells treated with HSPE and HSCE showed significant differences, with HSPE having more effects on human skin cells. Up-regulated genes by HSPE function in angiogenesis, the oxidation-reduction process, and glycolysis, while up-regulated genes by HSCE encode ribosome proteins and IFI6, functioning in the healing of radiation-injured skin cells. Therefore, we suggest that the two extracts from Roselle should be applied differently for cosmetics and pharmaceutical purposes. Our findings demonstrate the potential of Roselle extracts as a natural source for skincare products.


Subject(s)
Hibiscus , Humans , Transcriptome , Water , Skin , Plant Extracts/pharmacology
7.
Metab Eng ; 78: 137-147, 2023 07.
Article in English | MEDLINE | ID: mdl-37257683

ABSTRACT

Mycosporine-like amino acids (MAAs) are promising natural sunscreens mainly produced in marine organisms. Until now, metabolic engineering efforts to produce MAAs in heterologous hosts have mainly focused on shinorine production, and the low production levels are still not suitable for industrial applications. In this study, we successfully developed Saccharomyces cerevisiae strains that can efficiently produce various disubstituted MAAs, including shinorine, porphyra-334, and mycosporine-2-glycine (M2G), which are formed by conjugating serine, threonine, and glycine to mycosporine-glycine (MG), respectively. We first generated an MG-producing strain by multiple integration of the biosynthetic genes from cyanobacteria and applying metabolic engineering strategies to increase sedoheptulose-7-phosphate pool, a substrate for MG production. Next, five mysD genes from cyanobacteria, which encode D-Ala-D-Ala ligase homologues that conjugate an amino acid to MG, were introduced into the MG-producing strain to determine the substrate preference of each MysD enzyme. MysDs from Lyngbya sp., Nostoclinckia, and Euhalothece sp. showed high specificity toward serine, threonine, and glycine, resulting in efficient production of shinorine, porphyra-334, and M2G, respectively. This is the first report on the production of porphyra-334 and M2G in S. cerevisiae. Furthermore, we identified that the substrate specificity of MysD was determined by the omega loop region of 43-45 amino acids predicted based on its structural homology to a D-Ala-D-Ala ligase from Thermus thermophilus involved in peptidoglycan biosynthesis. The substrate specificities of two MysD enzymes were interchangeable by swapping the omega loop region. Using the engineered strain expressing mysD from Lyngbya sp. or N. linckia, up to 1.53 g/L shinorine or 1.21 g/L porphyra-334 was produced by fed-batch fermentation in a 5-L bioreactor, the highest titer reported so far. These results suggest that S. cerevisiae is a promising host for industrial production of different types of MAAs, providing a sustainable and eco-friendly alternative for the development of natural sunscreens.


Subject(s)
Cyanobacteria , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sunscreening Agents/chemistry , Sunscreening Agents/metabolism , Glycine/metabolism , Amino Acids/metabolism , Cyanobacteria/metabolism , Threonine , Serine/metabolism
8.
Life (Basel) ; 13(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36836780

ABSTRACT

Gynostemma pentaphyllum (GP) is widely used in herbal medicine. In this study, we developed a method for the large-scale production of GP cells using plant tissue culture techniques combined with bioreactors. Six metabolites (uridine, adenosine, guanosine, tyrosine, phenylalanine, and tryptophan) were identified in GP extracts. Transcriptome analyses of HaCaT cells treated with GP extracts using three independent methods were conducted. Most differentially expressed genes (DEGs) from the GP-all condition (combination of three GP extracts) showed similar gene expression on treatment with the three individual GP extracts. The most significantly upregulated gene was LTBP1. Additionally, 125 and 51 genes were upregulated and downregulated, respectively, in response to the GP extracts. The upregulated genes were associated with the response to growth factors and heart development. Some of these genes encode components of elastic fibers and the extracellular matrix and are associated with many cancers. Genes related to folate biosynthesis and vitamin D metabolism were also upregulated. In contrast, many downregulated genes were associated with cell adhesion. Moreover, many DEGs were targeted to the synaptic and neuronal projections. Our study has revealed the functional mechanisms of GP extracts' anti-aging and photoprotective effects on the skin using RNA sequencing.

9.
Mar Drugs ; 21(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36827162

ABSTRACT

Urban particulate matter (UPM) causes skin aging and inflammatory reactions by influencing skin cells through the aryl hydrocarbon receptor (AhR) signaling pathway. Porphyra yezoensis (also known as Pyropia yezoensis), a red alga belonging to the Bangiaceae family, is an edible red seaweed. Here, we examined the anti-pollutant effect of P. yezoensis water extract. While UPM treatment induced xenobiotic response element (XRE) promoter luciferase activity, P. yezoensis water extract reduced UPM-induced XRE activity. Next, we isolated an active compound from P. yezoensis and identified it as porphyra 334. Similar to the P. yezoensis water extract, porphyra 334 attenuated UPM-induced XRE activity. Moreover, although UPM augmented AhR nuclear translocation, which led to an increase in cytochrome P450 1A1 (CYP1A1) mRNA levels, these effects were reduced by porphyra 334. Moreover, UPM induced the production of reactive oxygen species (ROS) and reduced cell proliferation. These effects were attenuated in response to porphyra 334 treatment. Furthermore, our results revealed that the increased ROS levels induced by UPM treatment induced transient receptor potential vanilloid 1 (TRPV1) activity, which is related to skin aging and inflammatory responses. However, porphyra 334 treatment reduced this reaction by inhibiting ROS production induced by CYP1A1 activation. This indicates that porphyra 334, an active compound of P. yezoensis, attenuates UP-induced cell damage by inhibiting AhR-induced ROS production, which results in a reduction in TRPV1 activation, leading to cell proliferation. This also suggests that porphyra 334 could protect the epidermis from harmful pollutants.


Subject(s)
Environmental Pollutants , Porphyra , Particulate Matter , Porphyra/metabolism , Cytochrome P-450 CYP1A1/metabolism , Reactive Oxygen Species/metabolism , Water , Keratinocytes/metabolism
10.
ChemistryOpen ; 12(1): e202200200, 2023 01.
Article in English | MEDLINE | ID: mdl-36599688

ABSTRACT

We report a facile room temperature telescoping synthesis of a nanocurcumin complex with 17.5-fold permeation enhancement as determined by comparative in vitro permeation study with raw curcumin. The permeation results were further validated with in silico drug absorption prediction using ADMET predictors.


Subject(s)
Curcumin , Nanoparticles , Polysaccharides, Bacterial
11.
J Agric Food Chem ; 70(50): 15848-15858, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36475725

ABSTRACT

Mycosporine-like amino acids (MAAs) have been used in cosmetics and pharmaceuticals. The purpose of this work was to develop yeast strains for sustainable and economical production of MAAs, especially shinorine. First, genes involved in MAA biosynthetic pathway from Actinosynnema mirum were introduced into Saccharomyces cerevisiae for heterologous shinorine production. Second, combinatorial expression of wild and mutant xylose reductase was adopted in the engineered S. cerevisiae to facilitate xylose utilization in the pentose phosphate pathway. Finally, the accumulation of sedoheptulose 7-phosphate (S7P) was attempted by deleting transaldolase-encoding TAL1 in the pentose phosphate pathway to increase carbon flux toward shinorine production. In fed-batch fermentation, the engineered strain (DXdT-M) produced 751 mg/L shinorine in 71 h. Ultimately, 54 mg/L MAAs was produced by DXdT-M from rice straw hydrolysate. The results suggest that shinorine production by S. cerevisiae might be a promising process for sustainable production and industrial applications.


Subject(s)
Lignin , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Biomass , Lignin/metabolism , Xylose/metabolism , Fermentation
12.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36142418

ABSTRACT

Pepper (Capsicum annuum L.) plants produce berry fruits that are used as spices. Here, we examined the viromes of 15 pepper cultivars through RNA sequencing. We obtained 1,325 virus-associated contigs derived from 8 virus species. Bean broad wilt virus 2 (BBWV2) and cucumber mosaic virus (CMV) were identified as the major viruses infecting pepper plants, followed by potato virus Y, bell pepper endornavirus, and hot pepper endornavirus. The proportion of viral reads in each transcriptome ranged from 0.04% to 24.5%. BBWV2 was the dominant virus in seven cultivars, whereas CMV was dominant in five cultivars. All the bell pepper cultivars showed severe viral disease symptoms, whereas the commercially developed hot pepper cultivars were asymptomatic or had mild symptoms. In addition, 111 complete viral segments were obtained from 7 viruses. Based on the obtained viral genomes, the genetic relationship between the identified viruses and quasispecies of BBWV2 and CMV in each pepper plant was determined. Newly designed primers for nine viruses confirmed the results of RNA sequencing. Taken together, this study, for the first time, provides a comprehensive overview of viromes in 15 major pepper cultivars through RNA sequencing.


Subject(s)
Capsicum , Cucumovirus , Cytomegalovirus Infections , Piper nigrum , Capsicum/genetics , Cucumovirus/genetics , Cytomegalovirus Infections/genetics , Genome, Viral , Piper nigrum/genetics , Virome
13.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202675

ABSTRACT

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


Subject(s)
Garlic/microbiology , Metagenome , Metagenomics , Microbiota , Bacteria/classification , Bacteria/genetics , Computational Biology/methods , Metagenomics/methods , Organ Specificity , Phylogeny , Sequence Analysis, RNA
14.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201359

ABSTRACT

Red pepper (Capsicum annuum, L.), is one of the most important spice plants in Korea. Overwintering pepper fruits are a reservoir of various microbial pepper diseases. Here, we conducted metagenomics (DNA sequencing) and metatranscriptomics (RNA sequencing) using samples collected from three different fields. We compared two different library types and three different analytical methods for the identification of microbiomes in overwintering pepper fruits. Our results demonstrated that DNA sequencing might be useful for the identification of bacteria and DNA viruses such as bacteriophages, while mRNA sequencing might be beneficial for the identification of fungi and RNA viruses. Among three analytical methods, KRAKEN2 with raw data reads (KRAKEN2_R) might be superior for the identification of microbial species to other analytical methods. However, some microbial species with a low number of reads were wrongly assigned at the species level by KRAKEN2_R. Moreover, we found that the databases for bacteria and viruses were better established as compared to the fungal database with limited genome data. In summary, we carefully suggest that different library types and analytical methods with proper databases should be applied for the purpose of microbiome study.


Subject(s)
Bacteria/genetics , Capsicum/genetics , DNA Viruses/genetics , Fruit/growth & development , Metagenome , RNA Viruses/genetics , Transcriptome , Bacteria/classification , Capsicum/microbiology , Capsicum/virology , DNA Viruses/classification , Fruit/microbiology , Fruit/virology , RNA Viruses/classification , Seasons
15.
Article in English | MEDLINE | ID: mdl-33519944

ABSTRACT

Porphyra-334 is a kind of mycosporine-like amino acid absorbing ultraviolet-A. Here, we characterized porphyra-334 as a potential antiaging agent. An in vitro assay revealed that porphyra-334 dramatically promoted collagen synthesis in fibroblast cells. The effect of porphyra-334 on cell proliferation was dependent on the cell type, and the increase of cell viability by porphyra-334 was the highest in keratinocyte cells among the three tested cell types. An in vivo clinical test with 22 participants demonstrated the possible role of porphyra-334 in the improvement of periorbital wrinkles. RNA-sequencing using human follicle dermal papilla (HFDP) cells upon porphyra-334 treatment identified the upregulation of metallothionein- (MT-) associated genes, confirming the antioxidant role of porphyra-334 with MT. Moreover, the expression of genes involved in nuclear chromosome segregation and the encoding of components of kinetochores was upregulated by porphyra-334 treatment. Furthermore, we found that several genes associated with the hair follicle cycle, the hair follicle structure, the epidermal structure, and stem cells were upregulated by porphyra-334 treatment, suggesting the potential role of porphyra-334 in hair follicle growth and maintenance. In summary, we provided several new pieces of evidence of porphyra-334 as a potential antiaging cosmetic agent and elucidated the expression network in HFDP cells upon porphyra-334.

16.
FEBS Open Bio ; 11(3): 633-651, 2021 03.
Article in English | MEDLINE | ID: mdl-33410284

ABSTRACT

Camellia japonica L. is a flowering tree with several medicinal and cosmetic applications. Here, we investigated the efficacy of C. japonica placenta extract (CJPE) as a potential therapeutic agent for promotion of hair growth and scalp health by using various in vitro and in vivo assays. Moreover, we performed transcriptome analysis to examine the relative expression of human follicle dermal papilla cells (HFDPC) in response to CJPE by RNA-sequencing (RNA-seq). In vitro assays revealed upregulation of the expression of hair growth marker genes in HFDPC after CJPE treatment. Moreover, in vivo clinical tests with 42 adult female participants showed that a solution containing 0.5% CJPE increased the moisture content of the scalp and decreased the scalp's sebum content, dead scalp keratin, and erythema. Furthermore, RNA-seq analysis revealed key genes in HFDPC which are associated with CJPE. Interestingly, genes associated with lipid metabolism and cholesterol efflux were upregulated. Genes upregulated by CJPE are associated with several hormones, including parathyroid, adrenocorticotropic hormone, α-melanocyte-stimulating hormone (alpha-MSH), and norepinephrine, which are involved in hair follicle biology. Furthermore, some upregulated genes are associated with the regulation of axon guidance. In contrast, many genes downregulated by CJPE are associated with structural components of the cytoskeleton. In addition, CJPE suppressed genes associated with muscle structure and development. Taken together, this study provides extensive evidence that CJPE may have potential as a therapeutic agent for scalp treatment and hair growth promotion.


Subject(s)
Camellia/chemistry , Gene Expression Profiling/methods , Genetic Markers/drug effects , Hair Follicle/cytology , Keratinocytes/cytology , Plant Extracts/administration & dosage , Adult , Cell Line , Female , Flowers/chemistry , Gene Expression Regulation/drug effects , Hair Follicle/chemistry , Hair Follicle/drug effects , Humans , Keratinocytes/chemistry , Keratinocytes/drug effects , Keratins/analysis , Keratins/drug effects , Middle Aged , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sebum/drug effects , Sequence Analysis, RNA , Treatment Outcome
17.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182726

ABSTRACT

In recent years, a number of active materials have been developed to provide anti-aging benefits for skin and, among them, peptides have been considered the most promising candidate due to their remarkable and long-lasting anti-wrinkle activity. Recent studies have begun to elucidate the relationship between the secretion of emotion-related hormones and skin aging. Kisspeptin, a neuropeptide encoded by the KISS1 gene, has gained attention in reproductive endocrinology since it stimulates the reproductive axis in the hypothalamus; however, the effects of Kisspeptin on skin have not been studied yet. In this study, we synthesized Kisspeptin-10 and Kisspeptin-E, which are biologically active fragments, to mimic the action of Kisspeptin. Next, we demonstrated the anti-aging effects of the Kisspeptin-mimicking fragments using UV-induced skin aging models, such as UV-induced human dermal fibroblasts (Hs68) and human skin explants. Kisspeptin-E suppressed UV-induced 11 beta-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) stimulation leading to a regulation of skin aging related genes, including type I procollagen, matrix metalloproteinases-1 (MMP-1), interleukin-6 (IL-6), and IL-8, and rescued the skin integrity. Taken together, these results suggest that Kisspeptin-E could be useful to improve UV-induced skin aging by modulating expression of stress related genes, such as 11ß-HSD1.


Subject(s)
Kisspeptins/chemical synthesis , Kisspeptins/pharmacology , Skin Aging/drug effects , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Cell Line , Collagen Type I/genetics , Collagen Type I/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression/drug effects , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Kisspeptins/chemistry , Kisspeptins/genetics , Kisspeptins/physiology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Models, Biological , Models, Molecular , Molecular Mimicry , Molecular Structure , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Protein Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin/drug effects , Skin/metabolism , Skin Aging/genetics , Skin Aging/physiology , Skin Physiological Phenomena , Solid-Phase Synthesis Techniques , Tissue Culture Techniques , Ultraviolet Rays/adverse effects
18.
Molecules ; 25(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053781

ABSTRACT

The skin is the largest and a remarkably plastic organ that serves as a protective barrier against environmental stimuli and injuries throughout life. Skin injuries are serious health problems, and wound healing is a critical process to replace devitalized cellular and tissue structures. Although some endogenous opioids are known to be involved in the modulation of wound healing, it remains to be determined whether the ß-neoendorphin (ß-NEP), an endogenous opioid, has beneficial effects on wound repair in human keratinocyte. In this study, we found that ß-NEP accelerated wound repair through activation of mitogen-activated protein kinase (MAPK)/Erk1/2 signaling pathways in human keratinocytes. Moreover, the wound healing effect of ß-NEP is mainly through the acceleration of keratinocyte migration without affecting cell proliferation. Therefore, our studies reveal that ß-NEP plays an important role in the regulation of wound repair and suggest a therapeutic strategy to promote wound healing using ß-NEP.


Subject(s)
Keratinocytes/drug effects , beta-Endorphin/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Wound Healing/drug effects
19.
Arch Biochem Biophys ; 689: 108437, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32526201

ABSTRACT

Skin aging is influenced by several genetic, physiological, and environmental factors. In particular, ultraviolet (UV) exposure is an important factor involved in inducing skin photoaging. Autophagy controlling homeostatic balance between the synthesis, degradation, and recycling of cellular organelles and proteins plays important regulatory roles in several biological processes, including aging. The opioid neuropeptide α-neoendorphin (named NEP) is an endogenous decapeptide (N-YGGFLRKYPK-C) that activates the kappa opioid receptor and exhibits certain anti-aging and anti-wrinkling effects on skin cells; however, its action mechanism has not yet been elucidated. Therefore, the aim of this study was to determine the effects of NEP on anti-skin aging and autophagy activation in human dermal fibroblast cells. Western blot results showed that NEP down-regulates the production of phospho-mammalian target of rapamycin (p-mTOR), whereas increases the expression of key autophagy-related molecules such as Beclin-1, Atg5-Atg12, and LC3-II. The immunocytochemical analysis performed with anti-LC3-II antibody also showed that the autophagic indicators, autophagosomes are formed by NEP. These results suggest that NEP can activate cellular autophagy through mTOR-Beclin-1-mediated signaling pathway. It was also revealed by CM-H2DCF-DA assay and Western blottings that NEP can reduce the production of ultraviolet B (UVB)-induced reactive oxygen species (ROS) like with N-acetylcysteine (NAC), resulting in decreasing the expression levels of skin aging-related proteins, such as phospho-ERK (p-ERK), phospho-p38 (p-p38), and phospho-JNK (p-JNK). Furthermore, NEP could increase the type I procollagen production, while decreasing MMP-1, MMP-2, and MMP-9 activities. Taken together, the results demonstrate that NEP can reduce UVB-induced photoaging by activating autophagy.


Subject(s)
Autophagy , Endorphins/metabolism , Protein Precursors/metabolism , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects , Cell Line , Dermis/cytology , Dermis/metabolism , Dermis/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Procollagen/metabolism , Reactive Oxygen Species/metabolism
20.
Sci Rep ; 10(1): 3684, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111890

ABSTRACT

Porphyra 334 (P334), a mycosporine-like amino acid (MAA), is a secondary metabolite found in diverse marine and terrestrial organisms and has several beneficial effects on fibroblast proliferation, wound healing, and antioxidant activity. Here, we report that P334 accelerates the cell reprogramming process of mouse tail-tip fibroblasts (TTFs) and human dermal papilla (HDP) cells into induced pluripotent stem cells (iPSCs). We found that P334 significantly improved the cell reprogramming efficiency by activating the tri-methylation of histone 3 lysine 4 (H3K4me3), which controls mesenchymal to epithelial transition (MET) during the reprogramming process. Thus, we found that P334 directly regulates epigenetic changes, providing an efficient approach for natural compound-based cell reprogramming.


Subject(s)
Cellular Reprogramming Techniques , Cellular Reprogramming/drug effects , Cyclohexanones/pharmacology , Fibroblasts/metabolism , Glycine/analogs & derivatives , Induced Pluripotent Stem Cells/metabolism , Animals , Fibroblasts/cytology , Glycine/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...