Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8353, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114474

ABSTRACT

Single-cell and spatial technologies that profile gene expression across a whole tissue are revolutionizing the resolution of molecular states in clinical samples. Current commercially available technologies provide whole transcriptome single-cell, whole transcriptome spatial, or targeted in situ gene expression analysis. Here, we combine these technologies to explore tissue heterogeneity in large, FFPE human breast cancer sections. This integrative approach allowed us to explore molecular differences that exist between distinct tumor regions and to identify biomarkers involved in the progression towards invasive carcinoma. Further, we study cell neighborhoods and identify rare boundary cells that sit at the critical myoepithelial border confining the spread of malignant cells. Here, we demonstrate that each technology alone provides information about molecular signatures relevant to understanding cancer heterogeneity; however, it is the integration of these technologies that leads to deeper insights, ushering in discoveries that will progress oncology research and the development of diagnostics and therapeutics.


Subject(s)
Breast Neoplasms , Tumor Microenvironment , Humans , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Profiling , Transcriptome , Single-Cell Analysis
2.
Sci Adv ; 8(51): eadc8753, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542703

ABSTRACT

Salivary gland acinar cells are severely depleted after radiotherapy for head and neck cancer, leading to loss of saliva and extensive oro-digestive complications. With no regenerative therapies available, organ dysfunction is irreversible. Here, using the adult murine system, we demonstrate that radiation-damaged salivary glands can be functionally regenerated via sustained delivery of the neurogenic muscarinic receptor agonist cevimeline. We show that endogenous gland repair coincides with increased nerve activity and acinar cell division that is limited to the first week after radiation, with extensive acinar cell degeneration, dysfunction, and cholinergic denervation occurring thereafter. However, we found that mimicking cholinergic muscarinic input via sustained local delivery of a cevimeline-alginate hydrogel was sufficient to regenerate innervated acini and retain physiological saliva secretion at nonirradiated levels over the long term (>3 months). Thus, we reveal a previously unknown regenerative approach for restoring epithelial organ structure and function that has extensive implications for human patients.

3.
Dev Cell ; 57(22): 2550-2565.e5, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36413949

ABSTRACT

Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown. Here, we demonstrate that neuronal-epithelial cross-talk drives acinar specification through neuregulin (NRG1)-ERBB3-mTORC2 signaling. Using single-cell and global RNA sequencing of developing murine salivary glands, we identified NRG1-ERBB3 to precisely overlap with acinar specification during gland development. Genetic deletion of Erbb3 prevented cell lineage progression and the establishment of lumenized, secretory acini. Conversely, NRG1 treatment of isolated epithelia was sufficient to recapitulate the development of secretory acini. Mechanistically, we found that NRG1-ERBB3 regulates each developmental program through an mTORC2 signaling pathway. Thus, we reveal that a neuronal-epithelial (NRG1/ERBB3/mTORC2) mechanism orchestrates the creation of functional acini.


Subject(s)
Neuregulins , Signal Transduction , Humans , Mice , Animals , Mechanistic Target of Rapamycin Complex 2 , Acinar Cells , Biological Transport , Neuregulin-1 , Receptor, ErbB-3
SELECTION OF CITATIONS
SEARCH DETAIL