Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(2): 554-560, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34989235

ABSTRACT

We demonstrate the vapor-liquid-solid growth of single-crystalline i-Si, i-Si/n-Si, and SixGe1-x/SiyGe1-y nanowires via the Geode process. By enabling nanowire growth on the large internal surface area of a microcapsule powder, the Geode process improves the scalability of semiconductor nanowire manufacturing while maintaining nanoscale programmability. Here, we show that heat and mass transport limitations introduced by the microcapsule wall are negligible, enabling the same degree of compositional control for nanowires grown inside microcapsules and on conventional flat substrates. Efficient heat and mass transport also minimize the structural variations of nanowires grown in microcapsules with different diameters and wall thicknesses. Nanowires containing at least 16 segments and segment lengths below 75 nm are demonstrated.

2.
ACS Appl Mater Interfaces ; 14(1): 1740-1746, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34931792

ABSTRACT

We study the thermal conductivity of diameter-modulated Si nanowires to understand the impact of different nanoscale transport mechanisms as a function of nanowire morphology. Our investigation couples transient suspended microbridge measurements of diameter-modulated Si nanowires synthesized via vapor-liquid-solid growth and dopant-selective etching with predictive Boltzmann transport modeling. We show that the presence of a low thermal conductivity phase (i.e., porosity) dominates the reduction in effective thermal conductivity and is supplemented by increased phonon-boundary scattering. The relative contributions of both mechanisms depend on the details of the nanoscale morphology. Our findings provide valuable insights into the factors that govern thermal conduction in complex nanoscale materials.

3.
Nanotechnology ; 33(10)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34808600

ABSTRACT

We demonstrate a bottom-up process for programming the deposition of coaxial thin films aligned to the underlying dopant profile of semiconductor nanowires. Our process synergistically combines three distinct methods-vapor-liquid-solid nanowire growth, selective coaxial lithography via etching of surfaces (SCALES), and area-selective atomic layer deposition (AS-ALD)-into a cohesive whole. Here, we study ZrO2on Si nanowires as a model system. Si nanowires are first grown with an axially modulated n-Si/i-Si dopant profile. SCALES then yields coaxial poly(methyl methacrylate) (PMMA) masks on the n-Si regions. Subsequent AS-ALD of ZrO2occurs on the exposed i-Si regions and not on those masked by PMMA. We show the spatial relationship between nanowire dopant profile, PMMA masks, and ZrO2films, confirming the programmability of the process. The nanoscale resolution of our process coupled with the plethora of available AS-ALD chemistries promises a range of future opportunities to generate structurally complex nanoscale materials and electronic devices using entirely bottom-up methods.

4.
ACS Nano ; 14(1): 282-288, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31854980

ABSTRACT

The fully bottom-up and scalable synthesis of complex micro/nanoscale materials and functional devices requires masking methods to define key features and direct the deposition of various coatings and films. Here, we demonstrate selective coaxial lithography via etching of surfaces (SCALES), an enabling bottom-up process to add polymer masks to micro/nanoscale objects. SCALES is a three-step process, including (1) bottom-up synthesis of compositionally modulated structures, (2) surface-initiated polymerization of a conformal mask, and (3) selective removal of the mask only from regions whose underlying surface is susceptible to an etchant. We demonstrate the key features of and characterize the SCALES process with a series of model Si/Ge systems: Si and Ge wafers, Si and Ge nanowires, and Si/Ge heterostructure nanowires.

5.
Nat Commun ; 10(1): 5527, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797934

ABSTRACT

Tailoring interfaces with polymer brushes is a commonly used strategy to create functional materials for numerous applications. Existing methods are limited in brush thickness, the ability to generate high-density brushes of biopolymers, and the potential for regeneration. Here we introduce a scheme to synthesize ultra-thick regenerating hyaluronan polymer brushes using hyaluronan synthase. The platform provides a dynamic interface with tunable brush heights that extend up to 20 microns - two orders of magnitude thicker than standard brushes. The brushes are easily sculpted into micropatterned landscapes by photo-deactivation of the enzyme. Further, they provide a continuous source of megadalton hyaluronan or they can be covalently-stabilized to the surface. Stabilized brushes exhibit superb resistance to biofilms, yet are locally digested by fibroblasts. This brush technology provides opportunities in a range of arenas including regenerating tailorable biointerfaces for implants, wound healing or lubrication as well as fundamental studies of the glycocalyx and polymer physics.

6.
Small ; 15(15): e1805140, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30884159

ABSTRACT

Efficient characterization of semiconductor nanowires having complex dopant profiles or heterostructures is critical to fully understand these materials and the devices built from them. Existing electrical characterization techniques are slow and laborious, particularly for multisegment nanowires, and impede the statistical understanding of highly variable samples. Here, it is shown that electro-orientation spectroscopy (EOS)-a high-throughput, noncontact method for statistically characterizing the electrical properties of entire nanowire ensembles-can determine the conductivity and dimensions of two distinct segments in individual Si nanowires with axially encoded dopant profiles. This analysis combines experimental measurements and computational simulations to determine the electrical conductivity of the nominally undoped segment of two-segment Si nanowires, as well as the ratio of the segment lengths. The efficacy of this approach is demonstrated by comparing results generated by EOS with conventional four-point-probe measurements. This work provides new insights into the control and variability of semiconductor nanowires for electronic applications and is a critical first step toward the high-throughput interrogation of complete nanowire-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...