Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Electromyogr Kinesiol ; 19(2): e57-68, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18053743

ABSTRACT

Older people may operate much closer to their maximum capabilities than young adults when ascending stairs due to their lower maximum musculoskeletal capabilities. The purpose of this study was to establish the joint moment and range of motion demands of stair ascent relative to maximum capabilities in elderly and young adults. Fifteen elderly (mean age 75 years) and 17 young adult (mean age 25 years) participants ascended a purpose-built 4-step staircase with force platforms embedded into the steps and kinematic data was acquired using motion capture. Maximum musculoskeletal capabilities were assessed using a dynamometer. This study showed for the first time that stair ascent approaches the joint moment limits at the ankle in both young and older participants ( approximately 90%). One of the most important and novel findings of this study was that elderly people were only capable of meeting the high demands by adopting a number of alternative strategies not observed in young adults: (i) applying the joint moments differently than young adults across the knee and ankle, (ii) translocating energy from the knee to the ankle, thereby enhancing the ankle joint moment upon maximum demand and (iii) by enabling the plantarflexors to act over a more favourable portion of the moment-angle relation upon maximum ankle joint moment demand. The elderly displayed a more cautious strategy to optimize positional stability during stair ascent, by maintaining a smaller separation between the centre of mass and centre of pressure in the frontal plane. It seems that elderly people may meet the demands of unaided stair ascent by adopting a number of alternative strategies to compensate for their reduced musculoskeletal capabilities.


Subject(s)
Aging/physiology , Gait/physiology , Leg/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Adaptation, Physiological/physiology , Adult , Aged , Female , Humans , Male , Psychomotor Performance/physiology
2.
Gait Posture ; 28(2): 327-36, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18337102

ABSTRACT

The high incidence of falls in older adults during stair negotiation suggests that this task is physically challenging and potentially dangerous. The present study aimed to examine the influence of light handrail use on the biomechanics of stair negotiation in old age. Thirteen older adults ascended and descended a purpose-built staircase at their self-selected speed: (i) unaided and (ii) with light use of the handrails. Ground reaction forces (GRFs) were measured from force platforms mounted into each step and motion capture was used to collect kinematic data. Knee and ankle joint moments were calculated using the kinetic and kinematic data. The horizontal separation between the centre of mass (COM) and the centre of pressure (COP) was assessed in the sagittal and frontal planes. During stair ascent, handrail use caused a different strategy to be employed compared to unaided ascent with a redistribution of joint moments. Specifically, the ankle joint moment (of the trailing leg) was reduced with handrail use, which has previously been shown to approach its limits during unaided stair ascent, but the knee joint moment (of the leading leg) increased. Previous research has shown that a larger joint moment reserve is available at the knee during unaided stair ascent. During stair descent, the ankle joint moment increased with handrail use, this was associated, however, with a more effective control of balance as shown by a reduced COM-COP separation in the direction of progression compared to unaided descent. These results indicate that although the biomechanical mechanisms are different for stair ascent and descent, the safety of stair negotiation is improved for older adults with light use of the handrails.


Subject(s)
Aged/physiology , Facility Design and Construction , Ankle Joint/physiology , Biomechanical Phenomena , Female , Humans , Kinetics , Knee Joint/physiology
3.
Dev Med Child Neurol ; 50(1): 44-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18173630

ABSTRACT

The effect of spastic cerebral palsy on in vivo gastrocnemius muscle fascicle length is not clear. Similarity of fascicle lengths in children with diplegia and typically developing children, but shortening of fascicle lengths in the paretic legs of children with hemiplegia compared with the non-paretic legs, are both reported. In the former case, comparisons were made between fascicle lengths normalized to leg length, whereas in the latter case, absolute fascicle lengths were compared. The inherent assumptions when normalizing fascicle length (measured via ultrasonography) were not validated, raising the possibility that inappropriate normalization contributed to the controversy. We used statistical methods to control the potential confounding effect of leg length on fascicle length, and tested the feasibility of the normalization method for a group of 18 children with diplegia (nine males, nine females; mean age 8y 7mo [SD 3y 11mo], range 2-15y; Gross Motor Function Classification System levels II and III) and 50 typically developing children (20 males, 30 females; mean age 9y 1mo [SD 2y 4mo], range 4-14y). Children with diplegia, as a group, had shorter absolute and normalized fascicle lengths (p<0.05) but we could not refute the appropriateness of the normalization method. Other methodological issues (such as sample characteristics) might have contributed to the apparent controversy between the studies.


Subject(s)
Cerebral Palsy/pathology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Adolescent , Body Height , Case-Control Studies , Cerebral Palsy/complications , Child , Child, Preschool , Female , Humans , Leg , Male , Muscle Spasticity/etiology , Muscle Spasticity/pathology
4.
J Electromyogr Kinesiol ; 18(2): 218-27, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17822923

ABSTRACT

In this study, we aimed to establish the joint moment and joint range of motion requirements of stair descent and the demands relative to maximal capacities in elderly and young adults. Participants descended a custom-built standard dimension four-step staircase, at their self-selected speed in a step-over manner. Kinetic data were acquired from force platforms embedded into each of the steps and into the floor at the base of the stairs. A motion analysis system was used to acquire kinematic data and joint moments were calculated using the kinematic and kinetic data. Maximum capacities (joint moment and joint range of motion) were assessed using a dynamometer. During stair descent the elderly generated lower absolute ankle joint moments than the young, which enabled them to operate at a similar relative proportion of their maximal capacity compared to young adults (75%). The knee joint moments during stair descent were similar between groups, but the elderly operated at a higher proportion of their maximal capacity (elderly: 42%; young: 30%). Ankle plantarflexion-dorsiflexion angle changes were similar between groups, which meant that the elderly operated at a higher proportion of their maximal assisted dorsiflexion angle. These results indicate that the elderly redistribute the joint moments in order to maintain the task demands within 'safe' limits.


Subject(s)
Aging/physiology , Ankle Joint/physiology , Knee Joint/physiology , Walking/physiology , Adult , Aged , Biomechanical Phenomena , Electromyography , Humans , Range of Motion, Articular
5.
Hum Mov Sci ; 20(4-5): 603-41, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11750680

ABSTRACT

Two reliable findings in discrete, rapid aimed movements are that reaction time increases with decrease in target diameter (for the short-length movements), and reaction time is not affected by movement length [Journal of Experimental Psychology, Human Perception and Performance 104 (2) (1975) 147]. Participants normally use a short stylus (SS) to tap targets located on either side of a central (aligned with body midline) start-point with no restrictions imposed on the initial posture of the limb or segmental recruitment except as determined by movement conditions. Thus, the effects of movement parameters on reaction time in previous work are potentially confounded with the effect of initial posture of the limb at the start-point, along with order and amount of the contribution of segments recruited in response execution. Two experiments were performed to resolve the confounding between initial posture and recruitment of limb segments. In the first experiment a conventional stylus (pen-like) was employed and the starting position of the limb was aligned either with the body midline or with the participant's right shoulder. The effect of starting position on reaction time was not significant. In the second experiment the starting position was in line with the right shoulder. Two groups participated. One group used a conventional stylus. For the second group a modified (lengthened) stylus was used that permitted initial limb posture and number of limb segments recruited to be held constant across an extended range of movement lengths. When similar sets of limb segments were used, reaction time increased with decreasing movement length and diminishing target diameter. These findings suggest that uncontrolled initial limb posture, uncontrolled order of joint(s) recruitment, and the subsequent inclusion of reaction time values from incompatible sources may, in the final analysis, have confounded previous work investigating movement amplitude and target diameter effects on reaction time.


Subject(s)
Attention , Orientation , Psychomotor Performance , Reaction Time , Adult , Distance Perception , Female , Humans , Kinesthesis , Male , Motor Skills , Posture , Psychophysics
6.
Motor Control ; 2(2): 133-41, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9644284

ABSTRACT

The effect of foreperiod length on reaction time in memorized (MM) and nonmemorized (NM), precued, delayed responses was investigated. Six subjects participated in one long and one short foreperiod schedule testing session. An aiming task, using elbow supination/pronation, in response to a visual stimulus was employed. In the MM condition, target spatial information was available for a fraction of the foreperiod duration. In the NM condition, target information was available continuously until the subject attained the target position. Subjects responded with a significantly longer latency in the long foreperiod schedule. Within each foreperiod schedule, the shortest foreperiod resulted in significantly longer reaction time. However, the absolute value of foreperiod did not have a major effect on reaction time latency. Memorization and nonmemorization conditions did not affect reaction time.


Subject(s)
Memory , Psychomotor Performance , Reaction Time , Adult , Cues , Female , Humans , Male , Multivariate Analysis , Pronation/physiology , Supination/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...