Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(48): 56127-56137, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37987696

ABSTRACT

Perovskite nanowire arrays with large surface areas for efficient charge transfer and continuous highly crystalline domains for efficient charge transport exhibit ideal morphologies for solar-cell active layers. Here, we introduce a room temperature two-step method to grow dense, vertical nanowire arrays of formamidinium lead iodide (FAPbI3). PbI2 nanocrystals embedded in the cylindrical nanopores of anodized titanium dioxide scaffolds were converted to FAPbI3 by immersion in a FAI solution for a period of 0.5-30 min. During immersion, FAPbI3 crystals grew vertically from the scaffold surface as nanowires with diameters and densities determined by the underlying scaffold. The presence of butylammonium cations during nanowire growth stabilized the active α polymorph of FAPbI3, precluding the need for a thermal annealing step. Solar cells comprising α-FAPbI3 nanowire arrays exhibited maximum solar conversion efficiencies of >14%. Short-circuit current densities of 22-23 mA cm-2 were achieved, on par with those recorded for the best-performing FAPbI3 solar cells reported to date. Such large photocurrents are attributed to the single-crystalline, low-defect nature of the nanowires and increased interfacial area for photogenerated charge transfer compared with thin films.

2.
Phys Chem Chem Phys ; 24(43): 26485-26498, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36305165

ABSTRACT

The phase boundaries and thermodynamic properties of crystal phases in the salicylic acid (SA) - anthranilic acid (AA) system have been determined experimentally. The complete binary T-X diagram reveals a total of four crystalline phases, including a co-crystal and three crystalline solid solutions. The two eutectics were determined through triplicate DSC analyses at 33 compositions. By adding a liquid solvent and generating a ternary phase diagram, a methodology is introduced to determine the solid-state miscibility limits of the solid solutions at 20 and 55 °C. The crystalline solid solutions exhibit substantial differences in physical properties relative to the pure components, including solubility enhancements that are relevant for chemical processing and material properties. The thermodynamic relationships of the three polymorphs of AA have been resolved showing an enantiotropic transition temperature of 50-55 °C between Form I and III of pure AA. However, as a result of the solid solutions with SA, the enantiotropic transition temperature was suppressed by around 30 °C at the eutectoid. In addition, a co-existence envelope is formed, wherein the two AA polymorph solid solutions exist in equilibrium with one another over a wide range of temperatures and compositions.

3.
Adv Mater ; 34(1): e2106046, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34601757

ABSTRACT

Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB - ) centers, are emerging candidates for quantum sensing. However, the VB - defects suffer from low quantum efficiency and, as a result, exhibit weak photoluminescence. In this work, a scalable approach is demonstrated to dramatically enhance the VB - emission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few-layer hBN flakes positioned in between. Employing these plasmonic cavities, two orders of magnitude are extracted in photoluminescence enhancement associated with a corresponding twofold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and in realization of nanophotonic devices with spin defects in hexagonal boron nitride.

SELECTION OF CITATIONS
SEARCH DETAIL
...