Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080883

ABSTRACT

Drones have attracted extensive attention for their environmental, civil, and military applications. Because of their low cost and flexibility in deployment, drones with communication capabilities are expected to play key important roles in Fifth Generation (5G), Sixth Generation (6G) mobile networks, and beyond. 6G and 5G are intended to be a full-coverage network capable of providing ubiquitous connections for space, air, ground, and underwater applications. Drones can provide airborne communication in a variety of cases, including as Aerial Base Stations (ABSs) for ground users, relays to link isolated nodes, and mobile users in wireless networks. However, variables such as the drone's free-space propagation behavior at high altitudes and its exposure to antenna sidelobes can contribute to radio environment alterations. These differences may render existing mobility models and techniques as inefficient for connected drone applications. Therefore, drone connections may experience significant issues due to limited power, packet loss, high network congestion, and/or high movement speeds. More issues, such as frequent handovers, may emerge due to erroneous transmissions from limited coverage areas in drone networks. Therefore, the deployments of drones in future mobile networks, including 5G and 6G networks, will face a critical technical issue related to mobility and handover processes due to the main differences in drones' characterizations. Therefore, drone networks require more efficient mobility and handover techniques to continuously maintain stable and reliable connection. More advanced mobility techniques and system reconfiguration are essential, in addition to an alternative framework to handle data transmission. This paper reviews numerous studies on handover management for connected drones in mobile communication networks. The work contributes to providing a more focused review of drone networks, mobility management for drones, and related works in the literature. The main challenges facing the implementation of connected drones are highlighted, especially those related to mobility management, in more detail. The analysis and discussion of this study indicates that, by adopting intelligent handover schemes that utilizing machine learning, deep learning, and automatic robust processes, the handover problems and related issues can be reduced significantly as compared to traditional techniques.


Subject(s)
Unmanned Aerial Devices
2.
Sensors (Basel) ; 22(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408309

ABSTRACT

Multi-access edge computing (MEC) is a key technology in the fifth generation (5G) of mobile networks. MEC optimizes communication and computation resources by hosting the application process close to the user equipment (UE) in network edges. The key characteristics of MEC are its ultra-low latency response and real-time applications in emerging 5G networks. However, one of the main challenges in MEC-enabled 5G networks is that MEC servers are distributed within the ultra-dense network. Hence, it is an issue to manage user mobility within ultra-dense MEC coverage, which causes frequent handover. In this study, our purposed algorithms include the handover cost while having optimum offloading decisions. The contribution of this research is to choose optimum parameters in optimization function while considering handover, delay, and energy costs. In this study, it assumed that the upcoming future tasks are unknown and online task offloading (TO) decisions are considered. Generally, two scenarios are considered. In the first one, called the online UE-BS algorithm, the users have both user-side and base station-side (BS) information. Because the BS information is available, it is possible to calculate the optimum BS for offloading and there would be no handover. However, in the second one, called the BS-learning algorithm, the users only have user-side information. This means the users need to learn time and energy costs throughout the observation and select optimum BS based on it. In the results section, we compare our proposed algorithm with recently published literature. Additionally, to evaluate the performance it is compared with the optimum offline solution and two baseline scenarios. The simulation results indicate that the proposed methods outperform the overall system performance.

3.
Sensors (Basel) ; 21(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372437

ABSTRACT

The massive growth of mobile users will spread to significant numbers of small cells for the Fifth Generation (5G) mobile network, which will overlap the fourth generation (4G) network. A tremendous increase in handover (HO) scenarios and HO rates will occur. Ensuring stable and reliable connection through the mobility of user equipment (UE) will become a major problem in future mobile networks. This problem will be magnified with the use of suboptimal handover control parameter (HCP) settings, which can be configured manually or automatically. Therefore, the aim of this study is to investigate the impact of different HCP settings on the performance of 5G network. Several system scenarios are proposed and investigated based on different HCP settings and mobile speed scenarios. The different mobile speeds are expected to demonstrate the influence of many proposed system scenarios on 5G network execution. We conducted simulations utilizing MATLAB software and its related tools. Evaluation comparisons were performed in terms of handover probability (HOP), ping-pong handover probability (PPHP) and outage probability (OP). The 5G network framework has been employed to evaluate the proposed system scenarios used. The simulation results reveal that there is a trade-off in the results obtained from various systems. The use of lower HCP settings provides noticeable enhancements compared to higher HCP settings in terms of OP. Simultaneously, the use of lower HCP settings provides noticeable drawbacks compared to higher HCP settings in terms of high PPHP for all scenarios of mobile speed. The simulation results show that medium HCP settings may be the acceptable solution if one of these systems is applied. This study emphasises the application of automatic self-optimisation (ASO) functions as the best solution that considers user experience.


Subject(s)
Computer Communication Networks , Wireless Technology , Algorithms , Computer Simulation , Probability
4.
Sensors (Basel) ; 15(8): 19783-818, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26287191

ABSTRACT

It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

5.
ScientificWorldJournal ; 2014: 960584, 2014.
Article in English | MEDLINE | ID: mdl-25140350

ABSTRACT

Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs.


Subject(s)
Artificial Intelligence , Computer Communication Networks , Radio , Communications Media , Decision Making, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...