Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Vet Res ; 22(4): 277-287, 2021.
Article in English | MEDLINE | ID: mdl-35126535

ABSTRACT

BACKGROUND: The emergence of multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Staphylococcus aureus (MDRSA) in animals and humans with continuous contact are a great zoonotic concern. AIMS: This cross-sectional study was performed to investigate the carriage rate, genotypic characteristics, and to determine the antibiogram of S. aureus isolated from pets and pet owners in Malaysia. METHODS: Nasal and oral swab samples from 40 cats, 30 dogs, and 70 pet owners were collected through convenient sampling. Presumptive colonies on mannitol salt agar were subjected to biochemical identification. S. aureus and MRSA were confirmed by PCR detection of nuc and mecA genes, respectively. Molecular profiles for antimicrobial resistance and virulence genes in S. aureus were also determined. The antibiogram was carried out via Kirby-Bauer test using 18 antibiotics. RESULTS: 17.5% of cats, 20% of dogs, and 27% of pet owners were S. aureus positive. MRSA was also detected in dogs, and pet owners. S. aureus isolates displayed high resistance against penicillin (72.7%), and amoxicillin/clavulanate (66.7%). 39.4% of S. aureus isolates showed multidrug-resistance traits, phenotypically. Molecular characterization of S. aureus revealed the presence of mecA, tetk, tetL, ermA, ermB, ermC, msrA, scn, chp, sak, sep, and sea genes. CONCLUSION: This study showed the emergence of MRSA and MDRSA in pets and pet owners in Malaysia. The antibiogram findings showed resistance of S. aureus to multiple antibiotics. Furthermore, molecular analysis of immune evasion cluster (IEC) strongly suggests the spread of animal-adapted S. aureus lineages among pets and pet owners.

2.
Front Psychol ; 8: 1454, 2017.
Article in English | MEDLINE | ID: mdl-28883804

ABSTRACT

Emotion has a substantial influence on the cognitive processes in humans, including perception, attention, learning, memory, reasoning, and problem solving. Emotion has a particularly strong influence on attention, especially modulating the selectivity of attention as well as motivating action and behavior. This attentional and executive control is intimately linked to learning processes, as intrinsically limited attentional capacities are better focused on relevant information. Emotion also facilitates encoding and helps retrieval of information efficiently. However, the effects of emotion on learning and memory are not always univalent, as studies have reported that emotion either enhances or impairs learning and long-term memory (LTM) retention, depending on a range of factors. Recent neuroimaging findings have indicated that the amygdala and prefrontal cortex cooperate with the medial temporal lobe in an integrated manner that affords (i) the amygdala modulating memory consolidation; (ii) the prefrontal cortex mediating memory encoding and formation; and (iii) the hippocampus for successful learning and LTM retention. We also review the nested hierarchies of circular emotional control and cognitive regulation (bottom-up and top-down influences) within the brain to achieve optimal integration of emotional and cognitive processing. This review highlights a basic evolutionary approach to emotion to understand the effects of emotion on learning and memory and the functional roles played by various brain regions and their mutual interactions in relation to emotional processing. We also summarize the current state of knowledge on the impact of emotion on memory and map implications for educational settings. In addition to elucidating the memory-enhancing effects of emotion, neuroimaging findings extend our understanding of emotional influences on learning and memory processes; this knowledge may be useful for the design of effective educational curricula to provide a conducive learning environment for both traditional "live" learning in classrooms and "virtual" learning through online-based educational technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...