Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Medicine and Health ; : 175-197, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-732342

ABSTRACT

Long term glucocorticoids administration induces oxidative stress which leads to alteration of bone structure and strength. Palm oil is rich in tocotrienol, an antioxidant. It can be used for the prevention of oxidative stress related diseases. The main objective of this study was to determine the mechanism of palm tocotrienol in maintaining the bone structure and strength in glucocorticoid-induced osteoporosis. Thirty two adult male Sprague-Dawley rats, aged 3 months, weighing 300-320 g rats were used in this study. Sixteen rats undergone adrenalectomy and were administered with 120μg/kg/day intramuscular injection of dexamethasone. Eight rats were supplemented with oral palm tocotrienol 60 mg/kg/day (Adrx+Dex+PTT) and the other eight rats were given oral vehicle palm olein 0.1 ml/kg/day (Adrx+Dex). Eight rats underwent sham procedure and were given vehicle palm olein 0.05 ml/kg/day by intramuscularly and oral 0.1 ml/kg/day (Sham). The rats were euthanized after two months of treatments. Eight rats were euthanized after acclimatic action without receiving any treatment (Baseline). The right femurs were used for bone biomechanical strength and histomorphometry analysis while the left for gene expression and oxidative stress enzymes activities. The results indicated that long-term glucocorticoid treatment significantly increased bone resorption marker, CTX (6060.7 ± 410 pg/ml) and decreased bone structure and strength. Osteoblast and osteoclast related genes expressions indicated an increase in bone turnover. Supplementation of palm tocotrienol had maintained serum resorption (2619.4 + 209 pg/ml) marker level and preserved bone structure and strength. Gene expression analysis showed decrease in bone resorption. The findings suggested that palm tocotrienol has potential benefits against glucocorticoid-induced osteoporosis by regulating osteoblast and osteoclast related gene expression

2.
Medicine and Health ; : 232-244, 2016.
Article in English | WPRIM (Western Pacific) | ID: wpr-625329

ABSTRACT

The occurrence of severe lead (Pb) poisoning has risen in certain countries. There is increasing evidence that chronic lead exposure disturbs the prooxidant: antioxidant balance in the brain tissue and alters brain histology. The present study observed the antioxidant effect of tocotrienol-rich fraction (TRF) on brain tissues of the experimental rats following lead poisoning. Eighteen (n=18) male Sprague-Dawley rats, 6-weeks old, were randomly divided into control (CTRL) group and experimental groups; fed with 0.2% w/v lead acetate, as PB2 group; and fed with 0.2% w/v lead acetate and daily TRF supplementation (200 mg/kg body weight) as PB2T group. The experiment was conducted for 30 days. At the end of the study, the brain tissues were harvested and histopathological changes of the hippocampal region were observed. Biochemical findings such as brain lead, TRF and malondialdehyde (MDA) levels, and erythrocyte superoxide dismutase (SOD) activity were determined. It was observed that atypical apoptotic-like and disorganized neurons were present in the hippocampal region of the untreated PB2 group compared to PB2T group. Biochemical parameters showed a significant decrease (p 0.05) was obtained for MDA level, there was a significant increase (p < 0.05) in the erythrocyte SOD activity in PB2T compared to PB2 and CTRL. Supplementation with TRF improved histopathological changes in the brain tissues caused by lead exposure in drinking water by reducing lead accumulation in the brain of experimental rats.


Subject(s)
Lead Poisoning
3.
Clin Ter ; 164(2): 119-24, 2013.
Article in English | MEDLINE | ID: mdl-23698204

ABSTRACT

AIM: Aging is attributed to neuronal loss associated with increased oxidative stress. Vitamin E, and in particular, tocotrienol are potent antioxidants, which have been shown to be neuroprotective. The main aim of the present study was to observe the effect of long term intake of vitamin E in the form of tocotrienol rich fraction (TRF) and refined, bleached, deodorized palm olein (RBDPO) on the brain of experimental rats. MATERIALS AND METHODS: Thirty male Wistar rats aged 3 months were either supplemented with TRF (dose of 200 mg/kg body weight), RBDPO (dose of 1 ml/kg body weight) or distilled water, continuously for 8 months. The animals were then examined in vivo for clinical magnetic resonance imaging (MRI) studies before being sacrificed. The brain was extracted, measured and studied for histological changes. RESULTS: The magnetic resonance imaging (MRI) scan of the lateral ventricle, cortical thickness of cingulate gyrus and hippocampus size did not show any significant changes in all three groups. The brain weight, length and width as well as histological sections of the brain showed no significant changes between the groups. CONCLUSION: It is thereby concluded that chronic consumption of vitamin E was not detrimental to the central nervous system.


Subject(s)
Central Nervous System Diseases/chemically induced , Central Nervous System Diseases/pathology , Vitamin E/adverse effects , Vitamins/adverse effects , Animals , Male , Rats , Rats, Wistar , Time Factors , Vitamin E/administration & dosage , Vitamins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...