Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Sci Food Agric ; 102(8): 3266-3276, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34802158

ABSTRACT

BACKGROUND: Evaluation of the quality properties of papaya becomes essential due to the acceleration of the fruit shelf-life senescence and the deterioration factor of the expected postharvest operations. In this study, the colour features in RGB, normalised RGB, HSV and L*a*b* channels were extracted and correlated with mechanical properties, moisture content (MC), total soluble solids (TSS) and pH for the prediction of quality properties at five ripening stages of papaya (R1-R5). RESULTS: The mean values of colour features in RGB R m , G m , B m , normalised RGB R nm , G nm , B nm HSV H m , S m , V m , and L*a*b* L m , a m , b m were the best estimator for predicting TSS with R2 ≥ 0.90. All colour channels also showed satisfactory accuracies of R2 ≥ 0.80 in predicting the bioyield force, apparent modulus and mean force. The highest average classification accuracy was obtained using linear discriminant analysis (LDA) with an average accuracy of more than 82%. The study showed that LDA, linear support vector machine, quadratic discriminant analysis and quadratic support vector machine obtained the correct classification of up to 100% for R5, whereas R1, R2, R3 and R4 gave classification accuracies in the range 83.75-91.85%, 85.6-90.25%, 85.75-90.85% and 77.35-87.15%, respectively. This indicates that R5 colour information was obviously different from R1-R4. The mean values of the HSV channel indicated the best performance to predict the ripening stages of papaya, compared to RGB, normalised RGB and L*a*b* channels, with an average classification accuracy of more than 80%. CONCLUSION: The study has shown the versatility of a machine vision system in predicting the quality changes in papaya. The results showed that the machine vision system can be used to predict the ripening stages as well as classifying the fruits into different ripening stages of papayas. © 2021 Society of Chemical Industry.


Subject(s)
Carica , Algorithms , Carica/chemistry , Discriminant Analysis , Fruit/chemistry , Support Vector Machine
2.
Foods ; 10(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670437

ABSTRACT

This study aims to develop a finite element (FE) model to determine the mechanical responses of Exotica papayas during puncture loads. The FE model of the puncture-test was developed using the ANSYS 19.1 software. The proposed framework combined the finite element method and statistical procedure to validate the simulation with the experimental results. Assuming the elastic-plastic behaviour of papaya, the mechanical properties were measured through tensile test and compression test for both skin and flesh. The geometrical models include a quarter solid of papaya that was subjected to a puncture test with a 2 mm diameter flat-end stainless-steel probe inserted into the fruit tissues at 0.5 mm/s, 1 mm/s, 1.5 mm/s, 2 mm/s, and 2.5 mm/s. The FE results showed good agreement with the experimental data, indicating that the proposed approach was reliable. The FE model was best predicted the bioyield force with the highest relative error of 14.46%. In conclusion, this study contributes to the usage of FE methods for predicting the puncture responses of any perishable fruit and agricultural products.

SELECTION OF CITATIONS
SEARCH DETAIL
...