Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 20526, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993497

ABSTRACT

We investigate the dynamics of non-classical correlations and quantum coherence in open quantum systems by employing metrics like local quantum Fisher information, local quantum uncertainty, and quantum Jensen-Shannon divergence. Our focus here is on a system of two qubits in two distinct physical situations: the first one when the two qubits are coupled to a cavity field whether the system is closed or open, while the second consists of two qubits immersed in dephasing reservoirs. Our study places significant emphasis on how the evolution of these quantum criterion is influenced by the initial state's purity (whether pure or mixed) and the nature of the environment (whether Markovian or non-Markovian). We observe that a decrease in the initial state's purity corresponds to a reduction in both quantum correlations and quantum coherence, whereas higher purity enhances these quantumness. Furthermore, we establish a quantum teleportation strategy based on the two different physical scenarios. In this approach, the resulting state of the two qubits functions as a quantum channel integrated into a quantum teleportation protocol. We also analyze how the purity of the initial state and the Markovian or non-Markovian regimes impact the quantum teleportation process.

2.
Entropy (Basel) ; 24(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35455208

ABSTRACT

In a system of two charge-qubits that are initially prepared in a maximally entangled Bell's state, the dynamics of quantum memory-assisted entropic uncertainty, purity, and negative entanglement are investigated. Isolated external cavity fields are considered in two different configurations: coherent-even coherent and even coherent cavity fields. For different initial cavity configurations, the temporal evolution of the final state of qubits and cavities is solved analytically. The effects of intrinsic decoherence and detuning strength on the dynamics of bipartite entropic uncertainty, purity and entanglement are explored. Depending on the field parameters, nonclassical correlations can be preserved. Nonclassical correlations and revival aspects appear to be significantly inhibited when intrinsic decoherence increases. Nonclassical correlations stay longer and have greater revivals due to the high detuning of the two qubits and the coherence strength of the initial cavity fields. Quantum memory-assisted entropic uncertainty and entropy have similar dynamics while the negativity presents fewer revivals in contrast.

3.
Sci Rep ; 12(1): 3581, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246543

ABSTRACT

We explore the non-local correlation dynamics in a Graphene sheet of disordered electrons in a two-dimensional honeycomb lattice, containing two sublattices, induced by the interaction range of impurity potentials of two Dirac points. The Bell function, uncertainty-induced non-locality, and concurrence are used to investigate the formation and robustness of the non-local correlation between the honeycomb lattice and the Dirac point. The generated lattice-point non-local correlations are explored when the lattice-point system is initially in the uncorrelated state. Due to the lattice-point interaction, the resulting Bell-function non-locality and entanglement concurrence satisfy the hierarchy principle. The generated uncertainty-induced non-locality correlation has a higher degree of stability and robustness than the Bell non-locality and concurrence. We analyze the robustness of the initial maximal non-local correlations under the effects of the band parameter, the intravalley scattering processes, the wave numbers, and the intrinsic decoherence. The formation and stability of lattice-point correlations are highly dependent on the honeycomb lattice and Dirac point characteristics.

4.
Entropy (Basel) ; 23(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34945901

ABSTRACT

In the thermodynamic equilibrium of dipolar-coupled spin systems under the influence of a Dzyaloshinskii-Moriya (D-M) interaction along the z-axis, the current study explores the quantum-memory-assisted entropic uncertainty relation (QMA-EUR), entropy mixedness and the concurrence two-spin entanglement. Quantum entanglement is reduced at increased temperature values, but inflation uncertainty and mixedness are enhanced. The considered quantum effects are stabilized to their stationary values at high temperatures. The two-spin entanglement is entirely repressed if the D-M interaction is disregarded, and the entropic uncertainty and entropy mixedness reach their maximum values for equal coupling rates. Rather than the concurrence, the entropy mixedness can be a proper indicator of the nature of the entropic uncertainty. The effect of model parameters (D-M coupling and dipole-dipole spin) on the quantum dynamic effects in thermal environment temperature is explored. The results reveal that the model parameters cause significant variations in the predicted QMA-EUR.

5.
Entropy (Basel) ; 23(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919469

ABSTRACT

An analytical solution for a master equation describing the dynamics of a qubit interacting with a nonlinear Kerr-like cavity through intensity-dependent coupling is established. A superposition of squeezed coherent states is propped as the initial cavity field. The dynamics of the entangled qubit-cavity states are explored by negativity for different deformed function of the intensity-dependent coupling. We have examined the effects of the Kerr-like nonlinearity and the qubit-cavity detuning as well as the phase cavity damping on the generated entanglement. The intensity-dependent coupling increases the sensitivity of the generated entanglement to the phase-damping. The stability and the strength of the entanglement are controlled by the Kerr-like nonlinearity, the qubit-cavity detuning, and the initial cavity non-classicality. These physical parameters enhance the robustness of the qubit-cavity entanglement against the cavity phase-damping. The high initial cavity non-classicality enhances the robustness of the qubit-cavity entanglement against the phase-damping effect.

6.
Entropy (Basel) ; 22(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-33285860

ABSTRACT

We explore the geometric phase in a system of two non-interacting qubits embedded in two separated open cavities linked via an optical fiber and leaking photons to the external environment. The dynamical behavior of the generated geometric phase is investigated under the physical parameter effects of the coupling constants of both the qubit-cavity and the fiber-cavity interactions, the resonance/off-resonance qubit-field interactions, and the cavity dissipations. It is found that these the physical parameters lead to generating, disappearing and controlling the number and the shape (instantaneous/rectangular) of the geometric phase oscillations.

7.
Entropy (Basel) ; 22(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-33286539

ABSTRACT

Nonclassical effects are investigated in a system formed by two quantum wells, each of which is inside an open cavity. The cavities are spatially separated, linked by a fiber, and filled with a linear optical medium. Based on Husimi distributions (HDs) and Wehrl entropy, we explore the effects of the physical parameters on the generation and the robustness of the mixedness and HD information in the phase space. The generated quantum coherence and the HD information depend crucially on the cavity-exciton and fiber cavity couplings as well as on the optical medium density. The HD information and purity are lost due to the dissipation. This loss may be inhibited by increasing the optical susceptibility as well as the couplings of the exciton-cavity and the fiber-cavity. These parameters control the regularity, amplitudes, and frequencies of the generated mixedness.

8.
Sci Rep ; 10(1): 20644, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33219257

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Rep ; 10(1): 13240, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32764648

ABSTRACT

We explore the phase space quantum effects, quantum coherence and non-classicality, for two coupled identical qubits with intrinsic decoherence. The two qubits are in a nonlinear interaction with a quantum field via an intensity-dependent coupling. We investigate the non-classicality via the Wigner functions. We also study the phase space information and the quantum coherence via the Q-function, Wehrl density, and Wehrl entropy. It is found that the robustness of the non-classicality for the superposition of coherent states, is highly sensitive to the coupling constants. The phase space quantum information and the matter-light quantum coherence can be controlled by the two-qubit coupling, initial cavity-field and the intrinsic decoherence.

10.
Entropy (Basel) ; 21(7)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-33267386

ABSTRACT

We explore the dissipative dynamics of two coupled qubits placed inside a coherent cavity-field under dipole-dipole interplay and 2-photon transitions. The generated non-classical correlations (NCCs) beyond entanglement are investigated via two measures based on the Hilbert-Schmidt norm. It is found that the robustness of the generated NCCs can be greatly enhanced by performing the intrinsic dissipation rate, dipole-dipole interplay rate, initial coherence intensity and the degree of the coherent state superpositions. The results show that the intrinsic decoherence stabilize the stationarity of the non-classical correlations while the dipole interplay rate boost them. The non-classical correlations can be frozen at their stationary correlations by increasing the intrinsic dissipation rate. Also NCCs, can be enhanced by increasing the initial coherent intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...