Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int Immunopharmacol ; 140: 112777, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39088923

ABSTRACT

Even while accelerated cardiomyocyte apoptosis is one of the primary causes of cardiac damage, the underlying mechanism is still mostly unknown. In addition to examining potential protective effects of bisoprolol and diosmin against CoCl2-induced cardiac injury, the goal of this study was to identify potential mechanisms regulating the hypoxic cardiac damage caused by cobalt chloride (CoCl2). For a period of 21 days except Cocl2 14 days from the first day of the experiment, rats were split into the following groups: Normal control group, rats received vehicle only (2 ml/kg/day, p.o.), (Cocl2, 150 mg/kg/day, p.o.), bisoprolol (25 mg/kg/day, p.o.); diosmin (100 mg/kg/day, p.o.) and bisoprolol + diosmin + Cocl2 groups. At the end of the experimental period, serum was taken for estimation of cardiac function, lipid profile, and pro/anti-inflammatory cytokines. Moreover, tissue samples were collected for evaluation of oxidative stress, endothelial dysfunction, α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Diosmin and bisoprolol, either alone or in combination, enhance heart function by reducing abnormalities in the electrocardiogram and the hypotension brought on by CoCl2. Additionally, they significantly ameliorate endothelial dysfunction by downregulating the cardiac expressions of α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Bisoprolol and diosmin produced modulatory activity against inflammatory state, redox balance, and atherogenic index concurrently. Together, diosmin and bisoprolol, either alone or in combination, significantly reduced all the cardiac alterations brought on by CoCl2. The capacity to obstruct hypoxia-induced α-SMA, PKC-α, MiR-143-3P/MAPK/MCP-1, MiR-143-3P/ERK5/CXCR4, Orai-1/STIM-1 signaling activation, as well as their anti-inflammatory, antioxidant, and anti-apoptotic properties, may be responsible for these cardio-protective results.


Subject(s)
Bisoprolol , Cardiotoxicity , Cobalt , Diosmin , MicroRNAs , ORAI1 Protein , Receptors, CXCR4 , Signal Transduction , Animals , Cobalt/toxicity , Male , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Cardiotoxicity/drug therapy , Rats , Bisoprolol/pharmacology , Bisoprolol/therapeutic use , Signal Transduction/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Diosmin/pharmacology , Diosmin/therapeutic use , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , Rats, Wistar , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Chemokine CCL2
SELECTION OF CITATIONS
SEARCH DETAIL