Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 11(7): 925-945, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37172100

ABSTRACT

IMA101 is an actively personalized, multi-targeted adoptive cell therapy (ACT), whereby autologous T cells are directed against multiple novel defined peptide-HLA (pHLA) cancer targets. HLA-A*02:01-positive patients with relapsed/refractory solid tumors expressing ≥1 of 8 predefined targets underwent leukapheresis. Endogenous T cells specific for up to 4 targets were primed and expanded in vitro. Patients received lymphodepletion (fludarabine, cyclophosphamide), followed by T-cell infusion and low-dose IL2 (Cohort 1). Patients in Cohort 2 received atezolizumab for up to 1 year (NCT02876510). Overall, 214 patients were screened, 15 received lymphodepletion (13 women, 2 men; median age, 44 years), and 14 were treated with T-cell products. IMA101 treatment was feasible and well tolerated. The most common adverse events were cytokine release syndrome (Grade 1, n = 6; Grade 2, n = 4) and expected cytopenias. No patient died during the first 100 days after T-cell therapy. No neurotoxicity was observed. No objective responses were noted. Prolonged disease stabilization was noted in three patients lasting for 13.7, 12.9, and 7.3 months. High frequencies of target-specific T cells (up to 78.7% of CD8+ cells) were detected in the blood of treated patients, persisted for >1 year, and were detectable in posttreatment tumor tissue. Individual T-cell receptors (TCR) contained in T-cell products exhibited broad variation in TCR avidity, with the majority being low avidity. High-avidity TCRs were identified in some patients' products. This study demonstrates the feasibility and tolerability of an actively personalized ACT directed to multiple defined pHLA cancer targets. Results warrant further evaluation of multi-target ACT approaches using potent high-avidity TCRs. See related Spotlight by Uslu and June, p. 865.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Adult , Female , Humans , Male , CD8-Positive T-Lymphocytes , Feasibility Studies , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/etiology , Receptors, Antigen, T-Cell/genetics
2.
Neurobiol Dis ; 11(1): 166-83, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12460556

ABSTRACT

Mitogen-activated protein kinases (such as Erk1/2) regulate phosphorylation of the microtubule-associated protein tau and processing of the amyloid protein beta, both events critical to the pathophysiology of Alzheimer's disease (AD). Here we report that enhanced and prolonged Erk1/2 phosphorylation in response to bradykinin (BK) was detected in fibroblasts of both familial and sporadic AD, but not age-matched controls (AC). The AD-associated abnormality in Erk1/2 phosphorylation was not seen in fibroblasts from Huntington's disease patients with dementia. The elevation of Erk1/2 phosphorylation occurred immediately after BK stimulation and required an IP3-sensitive Ca(2+) release as well as activation of PKC and c-src as upstream events. Treatment of cells with the PI-3 kinase blocker LY924002 partially inhibited the BK-stimulated Erk1/2 phosphorylation in AC, but had no effect in AD cells, suggesting that the BK-induced Erk1/2 phosphorylation in AD cells is independent of PI-3 kinase. Activation of the cAMP-responsive element binding protein (CREB) monitored as an increase in phosphorylation at Ser-133 was also observed after BK stimulation. Unlike the AD-specific differences for Erk1/2, however, the BK-stimulated CREB phosphorylation was not different between AC and AD cells. Abnormal Erk1/2 activities may alter downstream cellular processes such as gene transcription, amyloid precursor protein processing, and tau protein phosphorylation, which contribute to the pathogenesis of AD. Moreover, detection of AD-specific differences in MAP kinase in peripheral tissues may provide an efficient means for early diagnosis of AD as well as help us to identify therapeutic targets for drug discovery.


Subject(s)
Alzheimer Disease/metabolism , Fibroblasts/metabolism , MAP Kinase Signaling System/physiology , Adult , Aged , Aged, 80 and over , Bradykinin/pharmacology , Calcium Channels/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Enzyme Inhibitors/pharmacology , Humans , Indoles/pharmacology , Inositol 1,4,5-Trisphosphate Receptors , MAP Kinase Signaling System/drug effects , Maleimides/pharmacology , Middle Aged , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptor, Bradykinin B2 , Receptors, Bradykinin/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...