Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7650, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561346

ABSTRACT

This study presents an advanced metaheuristic approach termed the Enhanced Gorilla Troops Optimizer (EGTO), which builds upon the Marine Predators Algorithm (MPA) to enhance the search capabilities of the Gorilla Troops Optimizer (GTO). Like numerous other metaheuristic algorithms, the GTO encounters difficulties in preserving convergence accuracy and stability, notably when tackling intricate and adaptable optimization problems, especially when compared to more advanced optimization techniques. Addressing these challenges and aiming for improved performance, this paper proposes the EGTO, integrating high and low-velocity ratios inspired by the MPA. The EGTO technique effectively balances exploration and exploitation phases, achieving impressive results by utilizing fewer parameters and operations. Evaluation on a diverse array of benchmark functions, comprising 23 established functions and ten complex ones from the CEC2019 benchmark, highlights its performance. Comparative analysis against established optimization techniques reveals EGTO's superiority, consistently outperforming its counterparts such as tuna swarm optimization, grey wolf optimizer, gradient based optimizer, artificial rabbits optimization algorithm, pelican optimization algorithm, Runge Kutta optimization algorithm (RUN), and original GTO algorithms across various test functions. Furthermore, EGTO's efficacy extends to addressing seven challenging engineering design problems, encompassing three-bar truss design, compression spring design, pressure vessel design, cantilever beam design, welded beam design, speed reducer design, and gear train design. The results showcase EGTO's robust convergence rate, its adeptness in locating local/global optima, and its supremacy over alternative methodologies explored.


Subject(s)
Alaska Natives , Data Compression , Lagomorpha , Animals , Humans , Rabbits , Gorilla gorilla , Algorithms , Benchmarking
2.
Sci Rep ; 14(1): 7588, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555294

ABSTRACT

Establishing sustainable communities requires bridging the gap between academic knowledge and societal requirements; this is where entrepreneurial education comes in. The first phase involved a comprehensive review of the literature and extensive consultation with experts to identify and shortlist the components of entrepreneurship education that support sustainable communities. The second phase involved Total Interpretative Structural Modelling to explore or ascertain how the elements interacted between sustainable communities and entrepreneurial education. The factors are ranked and categorized using the Matrice d'impacts croises multiplication appliquee an un classement (MICMAC) approach. The MICMAC analysis classifies partnerships and incubators as critical drivers, identifying Student Entrepreneurship Clubs and Sustainability Research Centers as dependent elements. The study emphasizes alumni networks and curriculum designs as key motivators. The results highlight the critical role that well-designed entrepreneurial education plays in developing socially conscious entrepreneurs, strengthening communities, and generating long-term job prospects. The study provides a valuable road map for stakeholders dedicated to long-term community development agendas by informing the creation of strategic initiatives, curriculum updates, and policies incorporating entrepreneurial education.


Subject(s)
Curriculum , Students , Humans , Educational Status , Consciousness , Incubators
3.
Sci Rep ; 13(1): 13377, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591916

ABSTRACT

Malaria is an acute fever sickness caused by the Plasmodium parasite and spread by infected Anopheles female mosquitoes. It causes catastrophic illness if left untreated for an extended period, and delaying exact treatment might result in the development of further complications. The most prevalent method now available for detecting malaria is the microscope. Under a microscope, blood smears are typically examined for malaria diagnosis. Despite its advantages, this method is time-consuming, subjective, and requires highly skilled personnel. Therefore, an automated malaria diagnosis system is imperative for ensuring accurate and efficient treatment. This research develops an innovative approach utilizing an urgent, inception-based capsule network to distinguish parasitized and uninfected cells from microscopic images. This diagnostic model incorporates neural networks based on Inception and Imperative Capsule networks. The inception block extracts rich characteristics from images of malaria cells using a pre-trained model, such as Inception V3, which facilitates efficient representation learning. Subsequently, the dynamic imperative capsule neural network detects malaria parasites in microscopic images by classifying them into parasitized and healthy cells, enabling the detection of malaria parasites. The experiment results demonstrate a significant improvement in malaria parasite recognition. Compared to traditional manual microscopy, the proposed system is more accurate and faster. Finally, this study demonstrates the need to provide robust and efficient diagnostic solutions by leveraging state-of-the-art technologies to combat malaria.


Subject(s)
Anopheles , Parasites , Animals , Female , Fever , Health Status , Neural Networks, Computer
4.
Comput Intell Neurosci ; 2022: 4728063, 2022.
Article in English | MEDLINE | ID: mdl-36211006

ABSTRACT

Intrusion detection systems examine the computer or network for potential security vulnerabilities. Time series data is real-valued. The nature of the data influences the type of anomaly detection. As a result, network anomalies are operations that deviate from the norm. These anomalies can cause a wide range of device malfunctions, overloads, and network intrusions. As a result of this, the network's normal operation and services will be disrupted. The paper proposes a new multi-variant time series-based encoder-decoder system for dealing with anomalies in time series data with multiple variables. As a result, to update network weights via backpropagation, a radical loss function is defined. Anomaly scores are used to evaluate performance. The anomaly score, according to the findings, is more stable and traceable, with fewer false positives and negatives. The proposed system's efficiency is compared to three existing approaches: Multiscaling Convolutional Recurrent Encoder-Decoder, Autoregressive Moving Average, and Long Short Term Medium-Encoder-Decoder. The results show that the proposed technique has the highest precision of 1 for a noise level of 0.2. Thus, it demonstrates greater precision for noise factors of 0.25, 0.3, 0.35, and 0.4, and its effectiveness.


Subject(s)
Neural Networks, Computer , Time Factors
5.
Comput Intell Neurosci ; 2022: 8393318, 2022.
Article in English | MEDLINE | ID: mdl-35387252

ABSTRACT

There are several issues associated with Dark Web Structural Patterns mining (including many redundant and irrelevant information), which increases the numerous types of cybercrime like illegal trade, forums, terrorist activity, and illegal online shopping. Understanding online criminal behavior is challenging because the data is available in a vast amount. To require an approach for learning the criminal behavior to check the recent request for improving the labeled data as a user profiling, Dark Web Structural Patterns mining in the case of multidimensional data sets gives uncertain results. Uncertain classification results cause a problem of not being able to predict user behavior. Since data of multidimensional nature has feature mixes, it has an adverse influence on classification. The data associated with Dark Web inundation has restricted us from giving the appropriate solution according to the need. In the research design, a Fusion NN (Neural network)-S3VM for Criminal Network activity prediction model is proposed based on the neural network; NN- S3VM can improve the prediction.


Subject(s)
Machine Learning , Neural Networks, Computer , Learning
6.
Comput Intell Neurosci ; 2022: 7417298, 2022.
Article in English | MEDLINE | ID: mdl-35295275

ABSTRACT

An electrical device that transforms the electricity into the waves of radio and vice versa is termed the antenna. Its main deployment is in the transmitter and receiver of the antenna. While transmission, the transmitter of radio at the extremities of the antenna furnishes the electricity which oscillates at the frequency of radio wave and energy is released as current as em waves. Some of the voltage is formed from the em wave that is invaded at the point of receiving to amplify the receiver. This study focuses on the analysis of the satellite system to aid in mobile antenna tracking. It also examines the techniques for fuzzy control which make up traditional networks that are used. Initially, a basic idea of tracking loops with stabilized antennas was suggested in light of the requirement for the margin of phase and bandwidth. If the gain of the track is reduced due to changes in attributes and throughput, it will be reduced. In addition, fuzzy regulators and PID constituents are used to enhance the loop. The results indicate that the higher and lower antenna tracking gains within the loop were the best fit and the loop's fluctuations are reduced. A controller based on fuzzy logic can be most efficient due to its simplicity and robustness. It is also discovered that fuzzy logic controllers are evaluated by their behavior in relation. This paper presents an evaluation of the controllers in fuzzy logic, which is based on its integration with conventional controllers. There are three gains in PID's regulator PID and every gain can be used to control the variables of inputs and outcomes. The effects of the responses were analyzed and were compared. The commonality was discovered in the results according to the increase in time for II/6 and II/3 based on PID's regulator PID stability, it can be improved by this system, and there is a reduction in the duration of stability. Furthermore, the period of stability may be reduced through the fusion of PID and fuzzy. The effectiveness of the system could be enhanced by the implementation of the neural network. It is also possible to design the two types of control that could be used to control the proposed solid platform.


Subject(s)
Algorithms , Fuzzy Logic , Computer Simulation , Neural Networks, Computer
7.
Comput Intell Neurosci ; 2022: 2973324, 2022.
Article in English | MEDLINE | ID: mdl-35069715

ABSTRACT

Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry's clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS's performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.


Subject(s)
Cardiovascular Diseases , Data Analysis , Algorithms , Bayes Theorem , Cardiovascular Diseases/diagnosis , Humans , Machine Learning
8.
Comput Intell Neurosci ; 2016: 5207362, 2016.
Article in English | MEDLINE | ID: mdl-26819583

ABSTRACT

This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.


Subject(s)
Algorithms , Education , Goals , Models, Theoretical , Nonlinear Dynamics , Adolescent , Biological Evolution , Decision Making , Humans , Problem Solving , School Admission Criteria , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...