Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 420, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760701

ABSTRACT

Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.


Subject(s)
Antioxidants , Plasma Gases , Seedlings , Solanum lycopersicum , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Plasma Gases/pharmacology , Antioxidants/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism
2.
Arch Microbiol ; 202(10): 2679-2687, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32719949

ABSTRACT

Some studies focused on metabolic relationships between plants and their endophytic bacterial associates, and more research is required to generate critical evidence for these relationships. In the current interest, we tried to confirm the relationship between the traditional medicinal plant, Calotropis procera (Aiton) W.T. Aiton, and its associated endophytes, Bacillus siamensis and Bacillus amyloliquefaciens, as the first matching study regarding the production of bioactive secondary metabolites from the plant vis-a-vis its bacterial endophytes.Secondary metabolites of both the plant and its endophytic bacteria were extracted using different solvents, e.g., water, methanol, and ethyl acetate. All extracts exhibited high quantities of phenolics, flavonoids, tannins, and saponins. In addition, they showed significant antioxidant capacity which was found to be positively correlated with total phenolic contents. The highest total antioxidant capacity (99.28 ± 0.0 mg AA equivalent/g extract) was measured for the aqueous extract of B. siamensis.Antibacterial activity of the different extracts was evaluated against certain pathogenic bacteria, i.e., Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Salmonella typhi, Serratia marcescens, and Staphylococcus aureus. It was strikingly found that the broadest antibacterial spectrum was revealed by extracts of both C. procera and its endophytic B. siamensis. Interestingly, antibacterial activity was significantly correlated to phenolic and flavonoid contents.


Subject(s)
Bacillus amyloliquefaciens/chemistry , Bacillus/chemistry , Calotropis/chemistry , Calotropis/microbiology , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/analysis , Bacillus/physiology , Bacillus amyloliquefaciens/physiology , Bacteria/drug effects , Endophytes/chemistry , Endophytes/physiology , Flavonoids/analysis , Microbial Sensitivity Tests , Phenols/analysis , Plant Extracts/chemistry , Staphylococcus aureus , Tannins/analysis
3.
J Plant Physiol ; 168(10): 1136-41, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21477883

ABSTRACT

A short-term experiment was designed to measure the transcript levels of downstream genes contributing to the biosynthesis of steviol glycosides. Stevia rebaudiana plants were subjected to long- and short-day conditions for different time intervals. Samples from both lower and upper leaves were collected. Using quantitative real-time polymerase chain reaction, the transcript levels of three UDP-dependent glycosyltransferases, UGT85C2, UGT74G1 and UGT76G1, were studied. The results were compared with the steviol glycoside contents measured in the leaves, which were quantified by reversed phase HPLC. In the same daylength condition, steviol glycoside concentration and the transcript levels of the three UGT genes were higher in upper leaves than in lower leaves. Steviol glycosides accumulated more in plants under short-day conditions. Under these conditions, a highly significant correlation was found between UGT85C2 transcription and total steviol glycoside accumulation in the upper leaves. This suggests that the glycosylation of steviol to form steviolmonoside is the rate-limiting step in the glycosylation pathway of steviol glycosides. In these upper leaves, a relatively high accumulation of rebaudioside A compared to stevioside was also observed, however, without correlation with the transcription of UGT76G1.


Subject(s)
Diterpenes, Kaurane/biosynthesis , Glycosides/biosynthesis , Glycosyltransferases/metabolism , Stevia/chemistry , Stevia/metabolism , Uridine Diphosphate/metabolism , Chromatography, High Pressure Liquid , Genes, Plant/genetics , Glycosyltransferases/genetics , Photoperiod , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stevia/enzymology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...