Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399355

ABSTRACT

The journal retracts the article, "Optimized Icariin Phytosomes Exhibit Enhanced Cytotoxicity and Apoptosis-Inducing Activities in Ovarian Cancer Cells" [...].

3.
J Pharm Sci ; 111(12): 3304-3317, 2022 12.
Article in English | MEDLINE | ID: mdl-36007556

ABSTRACT

Preclinical studies suggest that most of statins or 3­hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors possess pleiotropic anticancer activity. The aim of the present work was to investigate the conjugation of the statin fluvastatin (FLV) with scorpion venom (SV), a natural peptide with proven anticancer properties, to enhance FLV cytotoxic activity and prepare colon targeted FLV-SV nanoconjugate beads for management of colon cancer. Response surface design was applied for the optimization of FLV-SV nanoconjugates. FLV-SV particle size and zeta potential were selected as responses. Cytotoxicity of optimized FLV-SV nanoconjugates was carried out on Caco2 cell line. Colon targeted alginate coated Eudragit S100 (ES100) beads for the optimized formula were prepared with the utilization of barium sulfate (BaSO4) as radiopaque contrast substance. Results revealed that optimized FLV-SV nanoconjugates showed a size of 71.21 nm, while the zeta potential was equal to 29.13 mV. Caco2 cells were considerably more sensitive to the FLV-SV formula (half-maximal inhibitory concentration (IC50) = 11.91 µg/mL) compared to SV and FLV used individually, as shown by values of IC50 equal to 30.23 µg/mL and 47.68 µg/mL, respectively. In vivo imaging of colon targeted beads, carried out by employing real-time X-ray radiography, confirmed the efficiency of colon targeted beads. Overall our results indicate that the optimized FLV-SV nanoconjugate loaded alginate coated ES100 beads could represent a promising approach for colon cancer with efficient colon targeting ability.


Subject(s)
Colonic Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Scorpion Venoms , Humans , Fluvastatin , Nanoconjugates , Caco-2 Cells , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Alginates
4.
Pharmaceutics ; 12(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660035

ABSTRACT

This study aimed at improving the targeting and cytotoxic effect of ellagic acid (EA) on colon cancer cells. EA was encapsulated in chitosan (CHIT) polymers then coated by eudragit S100 (ES100) microparticles. The release of EA double-coated microparticles (MPs) was tested at simulative pH values. Maximum release was observed at 24 h and pH 7.4. The cytotoxicity of EA MPs on HCT 116 colon cancer cells was synergistically improved as compared with raw EA. Cell-cycle analysis by flow cytometry suggested enhanced G2-M phase colon cancer cell accumulation. In addition, a significantly higher cell fraction was observed in the pre-G phase, which highlighted the enhancement of the proapoptotic activity of EA formulated in the double-coat mixture. Annexin-V staining was used for substantiation of the observed cell-death-inducing activity. Cell fractions were significantly increased in early, late, and total cell death. This was backed by high elevation in cellular content of caspase 3. Effectiveness of the double-coated EA to target colonic tissues was confirmed using real-time iohexol dye X-ray radiography. In conclusion, CHIT loaded with EA and coated with ES100 formula exhibits improved colon targeting as well as enhanced cytotoxic and proapoptotic activity against HCT 116 colon cancer when compared with the administration of raw EA.

5.
Antioxidants (Basel) ; 9(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414040

ABSTRACT

Piceatannol (PIC), a naturally occurring polyphenolic stilbene, has pleiotropic pharmacological activities. It has reported cytotoxic activities against different cancer cells. In the present study, PIC emulsomes (PIC-E) were formulated and assessed for cytotoxic activity. A Box-Behnken design was employed to investigate the influence of formulation factors on particle size and drug entrapment. After optimization, the formulation had a spherical shape with a particle size of 125.45 ± 1.62 nm and entrapment efficiency of 93.14% ± 2.15%. Assessment of cytotoxic activities indicated that the optimized PIC-E formula exhibited significantly lower IC50 against HCT 116 cells. Analysis of the cell cycle revealed the accumulation of cells in the G2-M phase as well as increased cell fraction in the sub-G1 phase, an indication of apoptotic-enhancing activity. Staining of cells with Annexin V indicated increased early and late apoptosis. Further, the cellular contents of caspase - 3 and Bax/Bcl-2 mRNA expression were significantly elevated by PIC-E. In addition, the mitochondrial membrane potential (MMP) was disturbed and reactive oxygen species (ROS) production was increased. In conclusion, PIC-E exhibited superior cell death-inducing activities against HCT 116 cells as compared to pure PIC. This is mediated, at least partly, by enhanced pro-apoptotic activity, disruption of MMP, and stimulation of ROS generation.

6.
Pharmaceutics ; 12(4)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290412

ABSTRACT

Icariin (ICA) is a flavonol glycoside that has pleiotropic pharmacological actions. It has cytotoxic effects against ovarian cancer cells and increases their chemosensitivity to chemotherapeutic drugs. Phytosomes are identified for their potential in drug delivery of cytotoxic agents. Thus, the purpose of this study was to determine the potential enhancement of ICA cytotoxicity activity in OVCAR-3 ovarian cancer cells via its formulation in phytosomes. ICA-phytosomal formulation was optimized using a Box-Behnken design. Particle size, shape, and in vitro drug release were used to characterize the optimized formula. The optimized formulation exhibited enhanced in vitro drug release. ICA-phytosomes exhibited enhanced cytotoxicity against ovarian cancer cells. Cell cycle analysis indicated accumulation of cells challenged with ICA-phytosomes in G2/M and pre-G1 phases. Staining of cells with annexin V indicated significant elevation of percentage cells with early and late apoptosis as well as total cell death. In addition, the formulation significantly disturbed mitochondrial membrane potential and cellular content of caspase 3. In addition, intracellular release of reactive oxygen species (ROS) was enhanced by ICA-phytosomes. In conclusion, phytosome formulation of ICA significantly potentiates its cytotoxic activities against OVCAR-3 cells. This is mediated, at least partly, by enhanced ICA cellular permeation, apoptosis, and ROS.

7.
Mar Drugs ; 18(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344610

ABSTRACT

This work aimed at improving the targeting and cytotoxicity of simvastatin (SMV) against colon cancer cells. SMV was encapsulated in chitosan polymers, followed by eudragit S100 microparticles. The release of SMV double coated microparticles was dependent on time and pH. At pH 7.4 maximum release was observed for 6 h. The efficiency of the double coat to target colonic tissues was confirmed using real-time X-ray radiography of iohexol dye. Entrapment efficiency and particle size were used in the characterization of the formula. Cytotoxicity of SMV microparticles against HCT-116 colon cancer cells was significantly improved as compared to raw SMV. Cell cycle analysis by flow cytomeric technique indicated enhanced accumulation of colon cancer cells in the G2/M phase. Additionally, a significantly higher cell fraction was observed in the pre-G phase, which highlighted enhancement of the proapoptotic activity of SMV prepared in the double coat formula. Assessment of annexin V staining was used for confirmation. Cell fraction in early, late and total cell death were significantly elevated. This was accompanied by a significant elevation of cellular caspase 3 activity. In conclusion, SMV-loaded chitosan coated with eudragit S100 formula exhibited improved colon targeting and enhanced cytotoxicity and proapoptotic activity against HCT-116 colon cancer cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Chitosan/chemistry , Colonic Neoplasms/drug therapy , Drug Delivery Systems , Simvastatin/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Carriers/chemistry , HCT116 Cells , Humans , Hydrogen-Ion Concentration , Male , Microspheres , Particle Size , Polymethacrylic Acids/chemistry , Rabbits , Simvastatin/pharmacology
8.
Drug Dev Ind Pharm ; 46(5): 751-761, 2020 May.
Article in English | MEDLINE | ID: mdl-32250181

ABSTRACT

Ondansetron HCl is a (5-HT3) serotonin receptor antagonist, used as anti-emetic drug in combination with anticancer agents. Conventional dosage forms have poor bioavailability and patient compliance. These problems can be reduced by the use of nasal niosomal thermo-reversible in situ gelling system. Niosomes were formulated using various surfactants (Span 60, Span 80, Tween 20, and Tween 80) in different ratios using the thin-film hydration technique. Niosomes were evaluated for particle size, zeta potential, transmission electron microscopy (TEM) imaging, drug entrapment efficiency, and in vitro drug release. Niosomes prepared using Span 60 and cholesterol in the ratio 1:1 (F5) showed higher entrapment efficiency (76.13 ± 1.2%) and in vitro drug release (91.76%) after 12 h was optimized. The optimized niosomes were developed into thermo-reversible in situ gel, composed of Poloxamer 407 and sodium carboxymethyl cellulose, prepared by cold method technique. Compatibility study (FTIR, DSC) was made for drugs and excipients that showed no significant interaction. The gel formulation G5 showed the most suitable gelation temperature (31 °C), viscosity (1250 mpoise), bioadhesion force (5860 ± 28 dyne/cm2), and in vitro drug release (70.6%) after 12 h. Comparative in vivo pharmacokinetic study on rabbits showed a sustained release and higher relative bioavailability of the prepared nasal in situ gel compared to similar dose of oral tablets (202.4%) which make ondansetron HCl niosomal nasal thermo-sensitive in situ gel a more convenient dosage form for the administration of ondansetron HCl than oral tablets.


Subject(s)
Drug Compounding/methods , Drug Delivery Systems/methods , Nasal Mucosa/drug effects , Ondansetron/administration & dosage , Ondansetron/chemical synthesis , Administration, Intranasal/methods , Animals , Antiemetics/administration & dosage , Antiemetics/chemical synthesis , Antiemetics/metabolism , Drug Evaluation, Preclinical/methods , Drug Liberation/drug effects , Drug Liberation/physiology , Liposomes , Male , Nasal Mucosa/metabolism , Ondansetron/metabolism , Rabbits
9.
Int J Nanomedicine ; 14: 7461-7473, 2019.
Article in English | MEDLINE | ID: mdl-31686817

ABSTRACT

BACKGROUND: Premature ejaculation (PE) is the most common type of male sexual disorder with important psychological consequences. Dapoxetine (DPX), a recently approved drug for the treatment of PE, suffers from low bioavailability with large variability that ranges from 15-76% (mean 42%) after oral administration. The objective of this study is to optimize the parameters for the preparation of DPX-Zein-alpha lipoic acid (ALA) nanoparticles (NPs) to improve the bioavailability of DPX and consequently decrease therapeutic dose and adverse effect, leading to patient satisfaction and compliance. METHODS: We investigated the effect of ALA concentration, PVA concentration and stirring rate on nanoparticle size (Y1), zeta potential (Y2), initial DPX release (Y3) and cumulative DPX release (Y4). In addition, in vivo pharmacokinetic study was performed for the optimized DPX formulation on human healthy volunteers compared with marketed DPX tablet. RESULTS: The optimized DPX-loaded NPs showed Y1, Y2, Y3, and Y4 of 159.24 nm, 19.14 mV, 25.31% and 95.9 %, respectively. A single oral dose of 30 mg of optimized DPX-loaded NPs to human volunteers resulted in 2-fold improvement of AUC (1376.145±339.592 vs 709.178±146.307 in DPX), 4-fold increase in tmax (2.5±0.314 vs 0.583±0.144), prolongation of MRT (7.637±1.373 compared to 6.031±1.826 h), but with reduction in t1/2 (5.283±1.077 vs 8.452±2.813). CONCLUSION: The clinical findings suggest 194% enhancement of relative bioavailability of the optimized DPX-loaded NPs, potentially leading to a decrease in therapeutic dose and associated side effects in the treatment of PE.


Subject(s)
Benzylamines/administration & dosage , Benzylamines/pharmacokinetics , Nanoparticles/chemistry , Naphthalenes/administration & dosage , Naphthalenes/pharmacokinetics , Thioctic Acid/chemistry , Zein/chemistry , Administration, Oral , Adult , Animals , Benzylamines/blood , Biological Availability , Drug Liberation , Humans , Male , Nanoparticles/ultrastructure , Naphthalenes/blood , Particle Size , Static Electricity , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...