Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17941, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864028

ABSTRACT

Wound healing is one of the most challenging medical circumstances for patients. Pathogens can infect wounds, resulting in tissue damage, inflammation, and disruption of the healing process. Simvastatin was investigated recently, as a wound healing agent that may supersede the present therapies for wounds. Our goal in this paper is to focus on formulation of simvastatin cubosomes for topical delivery, as a potential approach to improve simvastatin skin permeation. By this technique its wound healing effect could be improved. Cubosomes were prepared using the top-down method and the prepared cubosomes were characterized by several techniques. The most optimal simvastatin cubosomal formulation was then included in a cubogel dosage form using different gelling agents. The results showed that the average particle size of the prepared cubosomes was 113.90 ± 0.58 nm, the entrapment efficiency was 93.95 ± 0.49% and a sustained simvastatin release was achieved. The optimized formula of simvastatin cubogel displayed pseudoplastic rheological behavior. This same formula achieved enhancement in drug permeation through excised rat skin compared to free simvastatin hydrogel with flux values of 46.18 ± 2.12 mcg cm-2 h-1 and 25.92 ± 3.45 mcg cm-2 h-1 respectively. Based on the in-vivo rat studies results, this study proved a promising potential of simvastatin cubosomes as wound healing remedy.


Subject(s)
Nanoparticles , Simvastatin , Humans , Rats , Animals , Simvastatin/pharmacology , Poloxamer/pharmacology , Wound Healing , Hydrogels/pharmacology , Particle Size
2.
Carbohydr Polym ; 153: 526-534, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27561525

ABSTRACT

The colon is a promising site for drug targeting owing to its long transit time and mild proteolytic activity. The aim of this study was to prepare new low methoxy amidated pectin/NaCMC microspheres cross-linked by a mixture of Zn(2+) and Al(3+) ions and test their potential for colonic targeting of progesterone. A 2(4) factorial design was carried out to optimize the preparation conditions. High drug entrapment efficiency (82-99%) was obtained and it increased with increasing drug concentration but decreased with increasing polymer concentration. Drug release rate was directly proportional to the microsphere drug content and inversely related to Al(3+) ion concentration. Drug release was minimal during the first 3h but was significantly improved in the presence of 1% rat caecal contents, confirming the microsphere potential for colonic delivery. The microspheres achieved >2.3-fold enhancement of colonic progesterone permeability. These results confirm the viability of the produced microspheres as colon-targeted drug delivery vehicle.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Colon/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Pectins/chemistry , Progesterone/administration & dosage , Progestins/administration & dosage , Amides/chemistry , Animals , Drug Liberation , Female , Intestinal Absorption , Male , Progesterone/pharmacokinetics , Progestins/pharmacokinetics , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...