Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Child Neurol ; 37(5): 380-389, 2022 04.
Article in English | MEDLINE | ID: mdl-35322718

ABSTRACT

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic form of cerebral white matter disease whose clinicoradiologic correlation has not been completely understood. In this study, we investigated the association between clinical and brain magnetic resonance imaging (MRI) features in 22 Egyptian children (median age 7 years) with MLC. Gross motor function was assessed using the Gross Motor Function Classification System, and evaluation of brain MRI followed a consistent scoring system. Each parameter of extensive cerebral white matter T2 hyperintensity, moderate-to-severe wide ventricle/enlarged subarachnoid space, and greater than 2 temporal subcortical cysts was significantly associated (P < .05) with worse Gross Motor Function Classification System score, language abnormality, and ataxia. Having >2 parietal subcortical cysts was significantly related to a worse Gross Motor Function Classification System score (P = .04). The current study indicates that patients with MLC manifest signification association between certain brain MRI abnormalities and neurologic features, but this should be confirmed in larger studies.


Subject(s)
Brain Diseases , Cysts , Hereditary Central Nervous System Demyelinating Diseases , Megalencephaly , Nervous System Malformations , Brain Diseases/pathology , Child , Cysts/diagnostic imaging , Cysts/genetics , Cysts/pathology , Egypt , Humans , Language , Magnetic Resonance Imaging
2.
Analyst ; 142(8): 1333-1341, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28352887

ABSTRACT

Spectroscopic markers characteristic of reference glycosaminoglycan molecules were identified previously based on their vibrational signatures. Infrared spectral signatures of glycosaminoglycans in fixed cells were also recently demonstrated but probing live cells still remains challenging. Raman microspectroscopy is potentially interesting to perform studies under physiological conditions. The aim of the present work was to identify the Raman spectral signatures of GAGs in fixed and live cells and in their conditioned media. Biochemical and Raman analyses were performed on five cell types: chondrocytes, dermal fibroblasts, melanoma (SK-MEL-28), wild type CHO, and glycosaminoglycan-defective mutant CHO-745 cells. The biochemical assay of sulfated GAGs in conditioned media was only possible for chondrocytes, dermal fibroblasts, and wild type CHO due to the detection limit of the test. In contrast, Raman microspectroscopy allowed probing total glycosaminoglycan content in conditioned media, fixed and live cells and the data were analysed by principal component analysis. Our results showed that the Raman technique is sensitive enough to identify spectral markers of glycosaminoglycans that were useful to characterise the conditioned media of the five cell types. The results were confirmed at the single cell level on both live and fixed cells with a good differentiation between the cell types. Furthermore, the principal component loadings revealed prominent glycosaminoglycan-related spectral information. Raman microspectroscopy allows monitoring of the glycosaminoglycan profiles of single live cells and could therefore be developed for cell screening purposes and holds promise for identifying glycosaminoglycan signatures as a marker of cancer progression in tissues.


Subject(s)
Chondrocytes/cytology , Culture Media, Conditioned/chemistry , Fibroblasts/cytology , Glycosaminoglycans/chemistry , Spectrum Analysis, Raman , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Humans , Melanoma
SELECTION OF CITATIONS
SEARCH DETAIL
...