Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(7): 17765-17775, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36201079

ABSTRACT

In this work, Ti-doped Fe2O3 with hollow ellipsoidal capsules nanostructure has been prepared in a green manner using plant extract (flax seed). This new green hematite nanomaterial has been evaluated as photocatalyst for water treatment by testing its activity for degradation of bromophenol blue dye (BPB) and 2,4-dichlorophenoxy acetic acid (2,4-D) herbicide. For a better understanding of the green material properties, a comparison with the pristine Fe2O3 nanospheres previously prepared by the same procedure is included. Structural and optical properties of the green prepared materials are studied. The results revealed the success doping of Ti4+ at Fe3+ site, without forming any of TiO2 phases. It was also found that the Ti doping resulted in the reduction of the band gap of Fe2O3 as well as changing the morphology. The Ti-doped Fe2O3 nanomaterial exhibited an enhanced photocatalytic activity either for BPB dye or for 2,4-D degradation with more than 2 times higher rate than that using pristine Fe2O3.


Subject(s)
Herbicides , Nanostructures , Titanium/chemistry , Capsules , Catalysis , Coloring Agents/chemistry , Bromphenol Blue , 2,4-Dichlorophenoxyacetic Acid
2.
Environ Sci Pollut Res Int ; 29(56): 84357-84365, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35780264

ABSTRACT

For the tendency toward cleaner production and safe conversion of undesired toxic wastes to highly priced advanced products, this work introduces new ceramics/glass composites of Cr2O3/Fe2O3/lead silicate glass (LSG) from industrial LSG wastes. Both chromia Cr2O3 and hematite Fe2O3 ceramics are added equally to the LSG wastes with different percentages (10, 20, and 30 wt.%) via the pressureless sintering method. The competitiveness of this work is dependent on the conversion of undesired waste materials into advanced/smart optical materials with a low cost and an environmentally friendly method. Hence, the influence of both Cr2O3 and Fe2O3 additions on the behavior and the different characteristics of the lead silicate wastes are comprehensively investigated. Evaluation of the final ceramics/glass composites was achieved through their phase composition, microstructure, optical, and magnetic characteristics. The results verified that the insertion of both chromia and hematite together into the glass waste had a key role in improving its morphological properties and optical and magnetic behaviors. Composite with 30% of Cr2O3/Fe2O3 gave the highest optical absorbance of 90%, the lowest and best band gap energy of 1.68 ev, and the highest refractive index of 2.85. Also, it recorded the best magnetic behavior with the highest saturation magnetization of 139.700 × 10-2A m2 kg-1 and the best coercivity of 190.0 Oe. These findings confirmed the successful clean conversion of the hazardous lead silicate waste into advanced products with promising optoelectronic characteristics.


Subject(s)
Glass , Industrial Waste , Glass/chemistry , Silicates
3.
Adv Pharmacol Sci ; 2019: 5964687, 2019.
Article in English | MEDLINE | ID: mdl-31143208

ABSTRACT

The aim of this study was to synthesize a series of nickel(II)phthalocyanines (NiPcs) bearing four 4(3H)-quinazolinone ring system units, (qz)4NiPcs 4a-d. The electronic factors in the 4(3H)-quinazolinone moiety that attached to the NiPc skeleton had a magnificent effect on the antibacterial activity of the newly synthesized (qz)4NiPcs 4a-d against Escherichia coli. The minimum MICs and MBCs value were recorded for compounds 4a, 4b, 4c, and 4d, respectively. The results indicated that the studied (qz)4NiPcs 4a-d units possessed a broad spectrum of activity against Escherichia coli. Their antibacterial activities were found in the order of 4d > 4c > 4b > 4a against Escherichia coli, and the strongest antibacterial activity was achieved with compound 4d.

4.
Environ Sci Pollut Res Int ; 26(12): 12288-12301, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30840249

ABSTRACT

In this work, a new type of advanced 3D mesoporous carbon nanocomposites derived from Zn dust/PET bottle mixed waste with a high surface area is created. Interestingly, simultaneous transformation of Zn metal into ZnO nanoparticles and PET bottle waste to porous carbon materials occurred upon thermal treatment at 700 °C. The effect of the amount of Zn metal on the prepared materials has been studied. The carbon material-based waste presented very large surface area (up to 684.5 m2/g) with pore size distribution (18.47-16.88 nm). The SEM and TEM analysis revealed that the produced carbon materials have 3D porous dense layers with a gradient pore structure. The created waste-based nanocomposite exhibited an enhanced photocatalytic performance for the degradation of organic dyes (methylene blue and malachite green). It is believed that the presented work not only provides a sustainable approach to the creation of new nanocomposites of ZnO-mesoporous carbon materials for the application in photocatalysis but also introduces a new way of upcycling of mixed waste materials.


Subject(s)
Coloring Agents/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry , Carbon , Methylene Blue/chemistry , Photochemical Processes , Porosity
5.
Photodiagnosis Photodyn Ther ; 23: 25-31, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29870793

ABSTRACT

BACKGROUND: The aim of the present study was to modify the structural activity of zinc(II)phthalocyanine by combining it with thiophenyl groups then loaded in lipid nano-carriers and evaluate its parameters required for the structure-activity relationship (SAR) for photodynamic therapy (PDT) of cancer. METHODS: Tetra (4-Thiophenyl) sulfonated phthalocyaninatozinc(II) (PhS·SO3Na)4ZnPc 5 was synthesized and characterized by various spectroscopic methods as a test compound. Liver hepatocellular carcinoma (HepG2) cells were treated with the synthesized (PhS·SO3Na)4ZnPc 5 derivative loaded in lipid nano carriers to understand the effect of combined compound on liver cancer cells. Furthermore, HepG2 cells were irradiated by visible red light at 60 mW/cm2 for 20 min. The phototoxicity of (PhS·SO3Na)4ZnPc 5 after being formulated in both (L) and transfersomes (T) was investigated. RESULTS: Overall, the results indicate that combination of thiophenyl groups substitution, in particular in the structure of sulfonated zinc phthalocyanine is able to improve the photodynamic properties of ZnPc, and (PhS·SO3Na)4ZnPc 5 loaded in lipid nano-carriers can be a promising combined PDT treatment strategy for Liver hepatocellular carcinoma (HepG2) cells. CONCLUSIONS: The new formulation ZnPc-lipid nano-carriers will be beneficial in the upcoming clinical trials and would enhance the inhibition of tumor growth.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Indoles/pharmacology , Liver Neoplasms/drug therapy , Organometallic Compounds/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Cell Survival/drug effects , Drug Delivery Systems , Hep G2 Cells , Humans , Indoles/administration & dosage , Indoles/chemistry , Isoindoles , Liposomes/chemistry , Nanoparticles/chemistry , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Particle Size , Photosensitizing Agents/administration & dosage , Zinc Compounds
6.
Chemphyschem ; 17(6): 885-92, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26710930

ABSTRACT

The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .

7.
Chemistry ; 18(14): 4314-21, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22374869

ABSTRACT

The kinetics of the formation of gold nanoparticles on the surface of pre-illuminated TiO(2) have been investigated using stopped-flow technique and steady state UV/Vis spectroscopy. Excess electrons were loaded on the employed nanosized titanium dioxide particles by UV-A photolysis in the presence of methanol serving as hole scavenger, stored on them in the absence of oxygen and subsequently used for the reduction of Au(III) ions. The formation of gold nanoparticles with an average diameter of 5 nm was confirmed after mixing of the TiO(2) nanoparticles loaded with electrons with aqueous solution of tetrachloroaureate (HAuCl(4)) by their surface plasmon absorbance band at 530 nm, as well as by XRD and HRTEM measurements. The rate of formation of the gold nanoparticles was found to be a function of the concentration of the gold ions and the concentration of the stored electrons, respectively. The effect of PVA as a stabilizer of the gold nanoclusters was also studied. The observed kinetic behavior suggests that the formation of the gold nanoparticles on the TiO(2) surface is an autocatalytic process comprising of two main steps: 1) Reduction of the gold ions by the stored electrons on TiO(2) forming gold atoms that turn into gold nuclei. 2) Growth of the metal nuclei on the surface of TiO(2) forming the gold particles. Interestingly, at higher TiO(2) electron loading the excess electrons are subsequently transferred to the deposited gold metal particles resulting in "bleaching" of their surface plasmon band. This bleaching in the surface plasmon band is explained by the Fermi level equilibration of the Au/TiO(2) nanocomposites. Finally, the reduction of water resulting in the evolution of molecular hydrogen initiated by the excess electrons that have been transferred to the previously formed gold particles has also been observed. The mechanism of the underlying multistep electron-transfer process has been discussed in detail.

8.
J Phys Chem A ; 115(11): 2139-47, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21366310

ABSTRACT

The kinetics and the mechanism of various multielectron transfer reactions initiated by stored electrons in TiO(2) nanoparticles have been investigated employing the stopped flow technique. Moreover, the optical properties of the stored electrons in the TiO(2) nanoparticles have been studied in detail following the UV (A) photolysis of deaerated aqueous suspensions of TiO(2) nanoparticles in the presence of methanol. The reduction of common electron acceptors that are often present in photocatalytic systems such as O(2), H(2)O(2), and NO(3)(-) has been investigated. The experimental results clearly show that the stored electrons reduce O(2) and H(2)O(2) to water by multielectron transfer processes. Moreover, NO(3)(-) is reduced via the transfer of eight electrons evincing the formation of ammonia. On the other hand, the reduction of toxic metal ions, such as Cu(II), has been studied mixing their respective anoxic aqueous solutions with those containing the electrons stored in the TiO(2) particles. A two-electron transfer is found to occur, indicating the reduction of the copper metal ion into its non toxic metallic form. Other metal ions, such as Zn(II) and Mn(II), could not be reduced by TiO(2) electrons, which is readily explained on the bases of their respective redox potentials. The underlying reaction mechanisms are discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...