Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36009800

ABSTRACT

Pot trials were performed to explore the impacts of seed priming (SPr) plus leaf treatment (LTr) with trans-zeatin-type cytokinin (tZck; 0.05 mM) and silymarin (Sim; 0.5 mM) on growth, yield, physio-biochemical responses, and antioxidant defense systems in Cd-stressed wheat. tZck + Sim applied as SPr + LTr was more effective than individual treatments, and the impacts were more pronounced under stress conditions. Cd stress (0.6 mM) severely declined growth and yield traits, and photosynthesis efficiency (pigment contents, instantaneous carboxylation efficiency, and photochemical activity) compared to the control. These negative impacts coincided with increased levels of Cd2+, O2•- (superoxide), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and EL (electrolyte leakage). Non-enzymatic and enzymatic antioxidant activities, and tZck and Sim contents were also increased. However, tZck + Sim increased photosynthesis efficiency, and further boosted antioxidant activities, and contents of tZck and Sim, while minimizing Cd2+ levels in roots, leaves, and grains. The levels of O2•-, H2O2, MDA, and EL were also minimized, reflecting positively on growth and productivity. tZck + Sim applied as SPr + LTr was highly effective in promoting antioxidants and photosynthesis machineries, minimizing oxidative stress biomarkers and Cd2+ levels, boosting tolerance to Cd stress, and improving wheat productivity under Cd stress.

2.
Environ Pollut ; 310: 119815, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35926737

ABSTRACT

In recent years, much attention has been directed toward using nanoparticles (NPs) as one of the most effective strategies to improve plant growth, especially under salt stress conditions. Further research has been conducted to develop NPs using various chemical ways; accordingly, knowledge about the beneficial effect of bioSeNPs in rapeseed is obscure. Selenium (Se) is a vital micronutrient with a series of physiological and antioxidative properties. Seed priming is emerging as a low-cost, efficient, and environment-friendly seed treatment in nanotechnology. The current study was carried out to examine the promising effects of nanopriming via bioSeNPs on the expression level of aquaporin genes, seed microstructure, seed germination, growth traits, physiochemical attributes, and minerals uptake of two rapeseed cultivars under salinity stress conditions. Our investigation monitored the positive effects of bioSeNPs on the expression level of aquaporin genes (BnPIP1-1 and BnPIP2-1) and water uptake during the seed imbibition (4 and 8 h of priming), which indicated higher imbibition potential and germination promotion with bioSeNPs application (most effective at 150 µmol/L). The total performance index was significantly enhanced with nano-treatments in rapeseed seedlings. Collectively, nano-application improved seed microstructure, seed germination, and photosynthetic efficiency directly correlated with higher seedlings biomass, especially with a higher concentration of bioSeNPs. The enhancement in α-amylase and free amino acid contents in nanoprimed seeds resulted in rapid seed germination. Moreover, bioSeNPs increased the osmotic adjustment and enhanced the efficiency of the plant's defense system by improving the activity of enzymatic and non-enzymatic antioxidants, thus enhancing ROS scavenging under salt stress. The obtained results may indicate the strengthening of seed vigor, improving seedling growth and physiochemical attributes via bioSeNPs. Our findings displayed that bioSeNPs modulated the Na+ and K+ uptake, which improved the rapeseed growth and showed a close relationship with the low contents of toxic Na+ ion; thus, it prevented oxidative damage due to salt stress. This comprehensive data can add more knowledge to understand the mechanisms behind plant-bioSeNPs interaction and provide physiological evidence for the beneficial roles of nanopriming using bioSeNPs on rapeseed germination and seedling development under salinity stress conditions. Such studies can be used to develop simple prepackaged nano primer products, which can be used before sowing to boost seed germination and crop productivity under stress conditions.


Subject(s)
Aquaporins , Brassica napus , Brassica rapa , Nanoparticles , Selenium , Antioxidants , Germination , Salt Stress , Seedlings , Seeds
3.
Front Plant Sci ; 13: 1079260, 2022.
Article in English | MEDLINE | ID: mdl-36743545

ABSTRACT

The application of effective microorganisms (EMs) and/or nitrogen (N) have a stimulating effect on plants against abiotic stress conditions. The aim of the present study was to determine the impact of the co-application of EMs and N on growth, physio-biochemical attributes, anatomical structures, nutrients acquisition, capsaicin, protein, and osmoprotectant contents, as well as the antioxidative defense system of hot pepper (Capsicum annum L.) plants. In the field trials, EMs were not applied (EMs-) or applied (EMs+) along with three N rates of 120, 150, and 180 kg unit N ha-1 (designated as N120, N150, and N180, respectively) to hot pepper plants grown in saline soils (9.6 dS m-1). The application of EMs and/or high N levels attenuated the salt-induced damages to hot pepper growth and yield. The application of EMs+ with either N150 or N180 increased the number, average weight and yield of fruits by 14.4 or 17.0%, 20.8 or 20.8% and 28.4 or 27.5%, respectively, compared to hot pepper plants treated with the recommended dose (EMs- × N150). When EMs+ was individually applied or combined with either N150 or N180, increased accumulation of capsaicin were observed by 16.7 or 20.8%, protein by 12.5 or 16.7%, proline by 19.0 or 14.3%, and total soluble sugars by 3.7 or 7.4%, respectively, in comparison with those treated with the integrative EMs- × N150. In addition, the non-enzymatic contents (ascorbate, and glutathione) and enzymatic activities (catalase, superoxide dismutase, and glutathione reductase) of the antioxidant defense systems significantly increased in hot pepper plants treated with EMs+ alone or combined with N150 or N180 under salt stress conditions. Higher accumulation of nutrients (N, P, K+, and Ca2+) along with reduced Na+ acquisition was also evidenced in response to EMs+ or/and high N levels. Most anatomical features of stems and leaves recovered in hot pepper plants grown in saline soils and supplied with EMs+ and N. The application of EMs and N is undoubtedly opening new sustainable approaches toward enhancing abiotic stress tolerance in crops (e.g. hot pepper).

4.
Plants (Basel) ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616192

ABSTRACT

Bee-honey solution (BHS) is considered a plant growth multi-biostimulator because it is rich in osmoprotectants, antioxidants, vitamins, and mineral nutrients that can promote drought stress (DtS) resistance in common bean plants. As a novel strategy, BHS has been used in a few studies, which shows that the application of BHS can overcome the stress effects on plant productivity and can contribute significantly to bridging the gap between agricultural production and the steady increase in population under climate changes. Under sufficient watering (SW (100% of crop evapotranspiration; ETc) and DtS (60% of ETc)), the enhancing impacts of foliar application with BHS (0%, 0.5%, 1.0%, and 1.5%) on growth, productivity, yield quality, physiological-biochemical indices, antioxidative defense ingredients, and nutrient status were examined in common bean plants (cultivar Bronco). DtS considerably decreased growth and yield traits, green pod quality, and water use efficiency (WUE); however, application of BHS at all concentrations significantly increased all of these parameters under normal or DtS conditions. Membrane stability index, relative water content, nutrient contents, SPAD (chlorophyll content), and PSII efficiency (Fv/Fm, photochemical activity, and performance index) were markedly reduced under DtS; however, they increased significantly under normal or DtS conditions by foliar spraying of BHS at all concentrations. The negative impacts of DtS were due to increased oxidants [hydrogen peroxide (H2O2) and superoxide (O2•-)], electrolyte leakage (EL), and malondialdehyde (MDA). As a result, the activity of the antioxidant system (ascorbate peroxidase, glutathione reductase, catalase, superoxide dismutase, α-tocopherol, glutathione, and ascorbate) and levels of osmoprotectants (soluble protein, soluble sugars, glycine betaine, and proline) were increased. However, all BHS concentrations further increased osmoprotectant and antioxidant capacity, along with decreased MDA and EL under DtS. What is interesting in this study was that a BHS concentration of 1.0% gave the best results under SW, while a BHS concentration of 1.5% gave the best results under DtS. Therefore, a BHS concentration of 1.5% could be a viable strategy to mitigate the DtS impairment in common beans to achieve satisfactory growth, productivity, and green pod quality under DtS.

5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502153

ABSTRACT

Despite heterosis contributing to genetic improvements in crops, root growth heterosis in rapeseed plants is poorly understood at the molecular level. The current study was performed to discover key differentially expressed genes (DEGs) related to heterosis in two hybrids with contrasting root growth performance (FO; high hybrid and FV; low hybrid) based on analysis of the root heterosis effect. Based on comparative transcriptomic analysis, we believe that the overdominance at the gene expression level plays a critical role in hybrid roots' early biomass heterosis. Our findings imply that a considerable increase in up-regulation of gene expression underpins heterosis. In the FO hybrid, high expression of DEGs overdominant in the starch/sucrose and galactose metabolic pathways revealed a link between hybrid vigor and root growth. DEGs linked to auxin, cytokinin, brassinosteroids, ethylene, and abscisic acid were also specified, showing that these hormones may enhance mechanisms of root growth and the development in the FO hybrid. Moreover, transcription factors such as MYB, ERF, bHLH, NAC, bZIP, and WRKY are thought to control downstream genes involved in root growth. Overall, this is the first study to provide a better understanding related to the regulation of the molecular mechanism of heterosis, which assists in rapeseed growth and yield improvement.


Subject(s)
Brassica napus/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Roots/genetics , Brassica napus/metabolism , Carbohydrate Metabolism , Gene Expression Profiling , Hybrid Vigor , Hybridization, Genetic , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Signal Transduction , Transcriptome
6.
Plant Physiol Biochem ; 166: 376-392, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153882

ABSTRACT

Salinity stress negatively affects the plant's developmental stages through micronutrient imbalance. As an essential micronutrient, ZnO can substitute Na+ absorption under saline conditions. Therefore, nanoparticles as technological innovation, improve the plant growth efficiency under biotic and abiotic stresses. Nano-priming has become widely applicable in agricultural research during the last decade. The current study was conducted to highlight the impact of ZnONPs priming on seedling biological processes under 150 mM of NaCl using two rapeseed cultivars during the early seedling stage. All concentrations of ZnONPs increased the germination parameters i.e., FG%, GR, VI (I), and VI (II). Meanwhile, the high concentration (ZnO 100%) showed the highest increase in shoot length (9.60% and 25.63%), root length (41.64% and 48.17%) for Yang You 9 and Zhong Shuang 11 over hydro-priming, respectively, as well as biomass. Additionally, nano-priming improved the proline, soluble sugar, and soluble protein contents as a result of osmotic protection modulation. Moreover, nano-priming alleviated ROS and biosynthesis pigments through the reduction of accumulated (H2O2) and (O2-), and chlorophyll degradation, respectively, also enhanced antioxidant adjustment via improving the plant defense system. Nano-priming substituted the Na+ by Zn2+, K+, and Ca2+, and compensated the deficit of micronutrients, thus reduced the Na+ toxicity in the cell cytosol. To track the effects of priming during seed imbibition, it noticed that ZnO 100% and ZnO 100%+S increased the Linoleic and Linolenic acids among the studied fatty acids composition by 12.02%, 7.59%, 13.27%, and 10.38% (Yang You 9), 7.42%, 2.77%, 2.93%, and 1.49% (Zhong Shuang 11) over the hydro-priming, respectively. Moreover, the gene expression patterns of BnCAM and BnPER reflected the enhancement of germination levels, notably under the influence of ZnO 100% priming, which increased the level of BnCAM by 70.42% and 111.9% in Yang You 9 and Zhong Shuang 11, respectively. Consequently, ZnO nano-priming enhanced the seedling development through the biosynthesis of pigments, osmotic protection, reduction of ROS accumulation, adjustment of antioxidant enzymes, and improvement of the nutrient absorption, thus enhancing the economic yield under saline conditions.


Subject(s)
Brassica napus , Zinc Oxide , Germination , Hydrogen Peroxide , Salinity , Seedlings , Zinc Oxide/pharmacology
7.
Plants (Basel) ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906529

ABSTRACT

The negative effects of salt stress vary among different rapeseed cultivars. In this study, we investigated the sodium chloride tolerance among 10 rapeseed cultivars based on membership function values (MFV) and Euclidean cluster analyses by exposing seedlings to 0, 100, or 200 mM NaCl. The NaCl toxicity significantly reduced growth, biomass, endogenous K+ levels, relative water content and increased electrolyte leakage, soluble sugar levels, proline levels, and antioxidant enzyme activities. SPAD values were highly variable among rapeseed cultivars. We identified three divergent (tolerant, moderately tolerant, and sensitive) groups. We found that Hua6919 and Yunyoushuang2 were the most salt-tolerant cultivars and that Zhongshuang11 and Yangyou9 were the most salt-sensitive cultivars. The rapeseed cultivars were further subjected to photosynthetic gas exchange and anatomical trait analyses. Among the photosynthetic gas exchange and anatomical traits, the stomatal aperture was the most highly correlated with salinity tolerance in rapeseed cultivars and thus, is important for future studies that aim to improve salinity tolerance in rapeseed. Thus, we identified and characterized two salt-tolerant cultivars that will be useful for breeding programs that aim to develop salt-tolerant rapeseed.

SELECTION OF CITATIONS
SEARCH DETAIL
...