Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 5(2): 201-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25685488

ABSTRACT

The present work aims to study the in vitro properties of nano-hydroxyapatite/chitosan-gelatin composite materials. In vitro behavior was performed in simulated body fluid (SBF) to verify the formation of apatite layer onto the composite surfaces. The in vitro data proved the deposition of calcium and phosphorus ions onto hydroxyapatite /polymeric composite surfaces especially those containing high concentrations of polymer content. The degradation of the composites decreased with increase in the polymeric matrix content and highly decreased in the presence of citric acid (CA), especially these composites which contain 30% polymeric content. The water absorption of the composites increased with increase in the polymeric content and highly increased with CA addition. The Fourier transformed infrared reflectance (FT-IR) and scanning electron microscope (SEM) for the composites confirmed the formation of bone-like apatite layer on the composite surfaces, especially those containing high content of polymers (30%) with 0.2 M of CA. These promising composites have suitable properties for bio-applications such as bone grafting and bone tissue engineering applications in the future.

2.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4126-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23910323

ABSTRACT

In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Materials Testing/methods , Mechanical Phenomena , Nanocomposites/chemistry , Oxides/chemistry , Nanocomposites/ultrastructure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...