Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 44(5): 1832-44, 2016 May.
Article in English | MEDLINE | ID: mdl-26438451

ABSTRACT

Cartilage tissue engineering is a multifactorial problem requiring a wide range of material property requirements from provision of biological cues to facilitation of mechanical support in load-bearing diarthrodial joints. The study aim was to design, fabricate and characterize a template to promote endogenous cell recruitment for enhanced cartilage repair. A polylactic acid poly-ε-caprolactone (PLCL) support structure was fabricated using laser micromachining technology and thermal crimping to create a functionally-graded open pore network scaffold with a compressive modulus of 9.98 ± 1.41 MPa and a compressive stress at 50% strain of 8.59 ± 1.35 MPa. In parallel, rabbit mesenchymal stem cells were isolated and their growth characteristics, morphology and multipotency confirmed. Sterilization had no effect on construct chemical structure and cellular compatibility was confirmed. After four weeks implantation in an osteochondral defect in a rabbit model to assess biocompatibility, there was no evidence of inflammation or giant cells. Moreover, acellular constructs performed better than cell-seeded constructs with endogenous progenitor cells homing through microtunnels, differentiating to form neo-cartilage and strengthening integration with native tissue. These results suggest, albeit at an early stage of repair, that by modulating the architecture of a macroporous scaffold, pre-seeding with MSCs is not necessary for hyaline cartilage repair.


Subject(s)
Bone Substitutes/chemistry , Hyaline Cartilage , Materials Testing , Mesenchymal Stem Cells/metabolism , Polyesters/chemistry , Tibia , Tissue Scaffolds/chemistry , Animals , Disease Models, Animal , Hyaline Cartilage/injuries , Hyaline Cartilage/metabolism , Hyaline Cartilage/pathology , Male , Mesenchymal Stem Cells/pathology , Porosity , Rabbits , Tibia/injuries , Tibia/metabolism , Tibia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...