Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 333: 121988, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494207

ABSTRACT

Most active pharmaceutical ingredients (APIs) suffer from poor water solubility, often keeping them from reaching patients. To overcome the issues of poor drug solubility and subsequent low bioavailability, amorphous solid dispersions (ASDs) have garnered much attention. Cellulose ester derivatives are of interest for ASD applications as they are benign, sustainable-based, and successful in commercial drug delivery systems, e.g. in osmotic pump systems and as commercial ASD polymers. Synthesis of carboxy-pendant cellulose esters is a challenge, due in part to competing reactions between carboxyls and hydroxyls, forming ester crosslinks. Herein we demonstrate proof-of-concept for a scalable synthetic route to simple, yet highly promising ASD polymers by esterifying cellulose polymers through ring-opening of cyclic succinic or glutaric anhydride. We describe the complexity of such ring-opening reactions, not previously well-described, and report ways to avoid gelation. We report synthesis, characterization, and preliminary in vitro ASD evaluations of fifteen such derivatives. Synthetic routes were designed to accommodate these criteria: no protecting groups, no metal catalysts, mild conditions with standard reagents, simple purification, and one-pot synthesis. Finally, these designed ASD polymers included members that maintained fast-crystallizing felodipine in solution and release it from an ASD at rather high 20 % drug loading (DL).


Subject(s)
Cellulose , Polymers , Humans , Solubility , Drug Delivery Systems , Esters , Drug Compounding , Drug Liberation
2.
Carbohydr Polym ; 328: 121699, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220336

ABSTRACT

Zwitterionic polymers, with their equal amounts of cationic and anionic functional groups, have found widespread utility including as non-fouling coatings, hydrogel materials, stabilizers, antifreeze materials, and drug carriers. Polysaccharide-derived zwitterionic polymers are attractive because of their sustainable origin, potential for lower toxicity, and possible biodegradability, but previous methods for synthesis of zwitterionic polysaccharide derivatives have been limited in terms of flexibility and attainable degree of substitution (DS) of charged entities. We report herein successful design and synthesis of zwitterionic polysaccharide derivatives, in this case based on cellulose, by reductive amination of oxidized 2-hydroxypropyl cellulose (Ox-HPC) with ω-aminoalkanoic acids. Reductive amination products could be readily obtained with DS(cation) (= DS(anion)) up to 1.6. Adduct hydrophilic/hydrophobic balance (amphiphilicity) can be influenced by selecting the appropriate chain length of the ω-aminoalkanoic acid. This strategy is shown to produce a range of amphiphilic, water-soluble, moderately high glass transition temperature (Tg) polysaccharide derivatives in just a couple of efficient steps from commercially available building blocks. The adducts were evaluated as crystallization inhibitors. They are strong inhibitors of crystallization even for the challenging, poorly soluble, fast-crystallizing prostate cancer drug enzalutamide, as supported by surface tension and Flory-Huggins interaction parameter results.

3.
RSC Adv ; 11(63): 39696-39706, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-35494109

ABSTRACT

Antimicrobial activity and post-antibiotic effects (PAEs) are both important parameters in determination of the dosage regimen of antimicrobial agents. In the present study, antimicrobial activity and PAEs of clindamycin, doxycycline, linezolid, and their nanobiotic formulations were evaluated against two methicillin resistant Staphylococcus aureus clinical isolates (MRSA) encoded (MRSA-S1 and MRSA-S2). Nanobiotic formulations increased the susceptibility of MRSA isolates by 4-64 folds as compared to their conventional ones. The PAE values were determined after exposure of MRSA isolates for 1 h to 10× the MICs of the tested antibiotics. The duration of PAEs were recorded after bacterial growth in Mueller Hinton broth (MHB) free from antibiotic has been restored. The PAE values for MRSA-S1 were 2.5 h for the conventional antibiotics. However, the PAEs for nanobiotics were 4 h for both clindamycin and linezolid, while 3 h for doxycycline. For MRSA-S2, linezolid and linezolid nanobiotics PAEs were 3 h. PAEs of clindamycin and clindamycin nanobiotics were 3.75 h and 4 h, respectively. Doxycycline and doxycycline nanobiotics revealed the same PAEs patterns of 3.5 h. The findings of the current study may positively influence the pharmacodynamics of the antibiotics and consequently the dosage regimen of nanobiotics as well as on their clinical outcome.

4.
Biomed Res Int ; 2018: 7658238, 2018.
Article in English | MEDLINE | ID: mdl-30622962

ABSTRACT

Antibiotic-resistant and biofilm-forming bacteria have surprisingly increased over recent years. On the contrary, the rate of development of new antibiotics to treat these emerging superbugs is very slow. Therefore, the aim of this study was to prepare novel nanobiotic formulations to improve the antimicrobial activity of three antibiotics (linezolid, doxycycline, and clindamycin) against Staphylococci. Antibiotics were formulated as nanoemulsions and evaluated for their antimicrobial activities and cytotoxicities. Cytotoxicity of the conventional antibiotics and nanobiotics was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on rat hepatocytes. Half-maximal inhibitory concentration (IC50) was estimated from an experimentally derived dose-response curve for each concentration using GraphPad Prism software. Upon quantitative assessment of Staphylococcus biofilm formation, eighty-four isolates (66.14 %) were biofilm forming. Linezolid and doxycycline nanobiotics exhibited promising antibacterial activities. On the contrary, clindamycin nanobiotic exhibited poor antibacterial activity. Minimum biofilm inhibitory concentrations showed that 73.68 %, 45.6%, and 5.2% of isolates were sensitive to linezolid, doxycycline, and clindamycin nanobiotics, respectively. Results of this study revealed that antibiotics loaded in nanosystems had a higher antimicrobial activity and lower cytotoxicities as compared to those of conventional free antibiotics, indicating their potential therapeutic values.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Software , Staphylococcal Infections/drug therapy , Staphylococcus/physiology , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Hepatocytes/metabolism , Hepatocytes/microbiology , Hepatocytes/pathology , Rats , Staphylococcal Infections/metabolism , Staphylococcal Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...