Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 19(1): 1, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36597079

ABSTRACT

BACKGROUND: Avian pathogenic Escherichia coli (APEC) are considered a growing health problem to both poultry and the public, particularly due to its multi-drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are a promising multi-benefit candidate. This study focused on boosting the antimicrobial effect of the chemically synthesized ZnO-NPs using Polyethylene glycol-6000 (PEG-6000) and evaluating their potential to recover the sensitivity of Florfenicol and Streptomycin-resistant APEC to these drugs in a concentration range of 0.1-0.4 mg/mL. Four samples of ZnO-NPs were formulated and tested microbiologically. RESULTS: The physicochemical characterization showed well-crystallized spherical in situ synthesized ZnO-NPs using PEG-6000 (surfactant) and ethanol (co-surfactant) of ∼19-67 nm particle size after coating with PEG-6000 molecules. These ZnO-NPs demonstrated a strong concentration-dependent antibacterial effect against multidrug-resistant APEC strains, with a minimum inhibitory concentration of 0.1 mg/mL, Combining PEG-6000 coated in situ synthesized ZnO-NPs and Florfenicol induced 60% high sensitivity (30 mm inhibitory-zone), 30% intermediate sensitivity, and 10% resistance against APEC strains. The combination with Streptomycin revealed 50% high sensitivity, 30% intermediate sensitivity, and 20% resistance with a 20 mm maximum zone of inhibition using agar well diffusion test. CONCLUSION: In situ preparation of ZnO-NPs using PEG-6000 and ethanol followed by coating with PEG-6000 enhanced its antibacterial activity in minimum inhibitory concentration and regained the efficacy of Florfenicol and Streptomycin against APEC, referring to a non-antibiotic antimicrobial alternative and an effective combination regimen against multidrug-resistant APEC E. coli in veterinary medicine.


Subject(s)
Escherichia coli , Zinc Oxide , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Microbial Sensitivity Tests/veterinary , Birds , Polyethylene Glycols/pharmacology , Streptomycin/pharmacology , Surface-Active Agents/pharmacology
2.
Vet Med Int ; 2014: 195189, 2014.
Article in English | MEDLINE | ID: mdl-25506467

ABSTRACT

A total of 121 E. coli strains were isolated from broiler chickens (96 extraintestinal pathogenic (ExPEC) strains from diseased broiler chickens and 25 avian fecal E. coli (AFEC) from healthy ones). Ten of the isolates (6 from diseased chickens and 4 from healthy birds) were serogrouped and 25 were examined for 4 virulence markers (tsh, papC, colV, and iss genes) as well as for their antimicrobial resistance. Five strains were nontypable and the rest were serotyped as follows: O86:K61 (2/5), O78:K80 (1/5), and O128:K67 (1/5) were recovered from diseased chickens, while O111:K58 strain (1/4) was isolated from healthy ones. The iss gene was found in 72.2% of the examined ExPEC strains in contrast to zero percentages (0%) in the AFEC strains, which may serve as a good marker for distinguishing APEC and its knocking out may help in creation of candidate vaccine that may prove sucess in elimination of infections in broiler chickens. Antimicrobial resistance patterns revealed a complete resistance to gentamicin, pefloxacin, amoxicillin, and enrofloxacin among examined strains followed by varying degrees of resistance for the rest of tested agents. The highest resistance was recorded against norfloxacin, in 24 isolates (96%), in contrast to the lowest resistance was recorded against colistin sulphate, in 14 strains (56%). These findings suggest the need for the prudent use of antimicrobials with broiler chickens and act as a warrant for the possibility of avian sources to transmit these resistant isolates to humans.

3.
ISRN Vet Sci ; 2014: 916412, 2014.
Article in English | MEDLINE | ID: mdl-24977049

ABSTRACT

Ten infectious bursal disease virus (IBDV) field strains were isolated from 15 broiler flocks located in various parts of Asyut, Egypt. Seven strains were subjected to comparative sequencing and phylogenetic analyses to help provide optimal control program for protection against IBDV infection. Sequence analysis of a 530 bp hypervariable region in the VP2 gene revealed that the rate of identity and homology was around 95.6~99.1%. Sequence characterization revealed the 7 strains identified as vvIBDV with the four amino acids residues typical of vvIBDV (242I, 256I, 294I, 299S). The BURSA-VAC vaccine was the nearest vaccine in sequence similarity to the local examined IBDV strains followed by CEVACIBDL then Bursine plus and Nobilis Gumboro indicating its probable success in the face of incoming outbreaks when using these vaccines. Phylogenetic analysis revealed that the presence of three clusters for the examined strains and are grouped with reference very virulent IBDVs of European and Asian origin (Japanese and Hong Kong) strains suggesting the different ancestors of our isolates. The antigenic index showed a number of changes on the major and minor hydrophilic antigenic peaks of the virus surface structures indicating a new genetic evolution of the surface structure epitopes that may lead to vaccination failure and reemergence of the disease.

4.
Vet Ital ; 48(1): 77-86, 2012.
Article in English | MEDLINE | ID: mdl-22485004

ABSTRACT

The prevalence of Pasteurella multocida strains among 275 backyard chickens from different regions of Upper Egypt was studied. A total of 21 isolates of P. multocida were recovered in 21 out of 275 chickens tested (7.6%) and were confirmed using phenotypic characterisation. Somatic serotyping of the 21 isolates resulted in 12 isolates being classed as serotype A:1 (57.14%), 4 as serotype A:3 (19.05%) and 5 could not be typed (23.8%). Capsular typing, using multiplex polymerase chain reaction (PCR), demonstrated that 18 strains were capsular type A (85.7%), and 3 were type D (14.3%). The present findings suggest that a multiplex capsular PCR could be valuable for the rapid identification of P. multocida in cases of fowl cholera infection. A total of 5 isolates of P. multocida were selected to study their pathogenicity in embryonated chicken eggs instead of conducting a study in mature chickens. The results showed a variation in pathogenicity between the strains tested, namely: serotype A:1 strains caused 80% mortality, in contrast to 20% mortality by type D strains. Pathological findings included severe congestion of the entire embryo, haemorrhaging of the skin, feather follicles and toe, and ecchymotic haemorrhages on the liver of the inoculated embryos. The observations in this study indicate that P. multocida serogroup A could be highly pathogenic for mature chickens and therefore might be a cause of considerable economic losses in commercial production. A total of 10 isolates were subjected to antimicrobial susceptibility to determine the minimal inhibitory concentration of 7 antimicrobials. All isolates were susceptible to ciprofloxacin, florfenicol, streptomycin and sulphamethoxazol with trimethoprim and with varying degrees of sensitivity to the other agents.


Subject(s)
Chickens , Pasteurella Infections/veterinary , Pasteurella multocida , Poultry Diseases/epidemiology , Animals , Bacterial Capsules/classification , Drug Resistance, Microbial , Egypt/epidemiology , Incidence , Pasteurella Infections/drug therapy , Pasteurella Infections/epidemiology , Pasteurella multocida/classification , Pasteurella multocida/drug effects , Pasteurella multocida/pathogenicity , Polymerase Chain Reaction , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...