Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
JACS Au ; 4(9): 3593-3605, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39328747

ABSTRACT

Conjugated microporous polymers (CMPs) feature extended excellent porosity properties and fully conjugated electronic systems, making them highly effective for several uses, including photocatalysis, dye adsorption, CO2 capture, supercapacitors, and so on. These polymers are known for their high specific surface area and adjustable porosity. To synthesize DHTP-CMPs (specifically TPE-DHTP CMP and Anthra-DHTP CMP) with abundant nitrogen (N) and oxygen (O) adsorption sites and spherical structures, we employed a straightforward Schiff-base [4 + 2] condensation reaction. This involved using 2,5-dihydroxyterephthalaldehyde (DHTP-2CHO) as the primary building block and phenolic OH group source, along with two distinct structures: 4,4',4″,4"'-(ethene-1,1,2,2-tetrayl)tetraaniline (TPE-4NH2) and 4,4',4″,4"'-(anthracene-9,10-diylidenebis(methanediylylidene))tetraaniline (Anthra-4Ph-4NH2). The synthesized Anthra-DHTP CMP had a remarkable BET surface area (BETSA) of 431 m2 g-1. Additionally, it exhibited outstanding thermal stability, as shown by a T d10 of 505 °C. Furthermore, for practical implementation, the Anthra-DHTP CMP demonstrates a significant capacity for capturing CO2, measuring 1.85 mmol g-1 at a temperature of 273 K and 1 bar. In a three-electrode test, the Anthra-DHTP CMP has a remarkable specific capacitance of 121 F g-1 at 0.5 A g-1. Furthermore, even after undergoing 5000 cycles, it maintains a capacitance retention rate of 79%. Due to their outstanding pore characteristics, abundant N and O, and conjugation properties, this Anthtra-DHTP CMP holds significant potential for CO2 capture and supercapacitor applications. This work will pave the way for the development of materials based on DHTP-CMPs and their postmodification with additional groups, facilitating their use in photocatalysis, photodegradation, lithium battery applications, and so on.

2.
ACS Appl Mater Interfaces ; 16(31): 40858-40872, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39039025

ABSTRACT

Nitrogen-doped carbon materials, characterized by abundant microporous and nitrogen functionalities, exhibit significant potential for carbon dioxide capture and supercapacitors. In this study, a class of porous organic polymer (POP) were successfully synthesized by linking Cr-TPA-4BZ-Br4 and tetraethynylpyrene (Py-T). The model benzoxazine monomers of Cr-TPA-4BZ and Cr-TPA-4BZ-Br4 were synthesized using the traditional three-step method [involving CH═N formation, reduction by NaBH4, and Mannich condensation]. Subsequently, the Sonogashira coupling reaction connected the Cr-TPA-4BZ-Br4 and Py-T monomers, forming Cr-TPA-4BZ-Py-POP. The successful synthesis of Cr-TPA-4BZ-Br4 and Cr-TPA-4BZ-Py-POP was confirmed through various analytical techniques. After verifying the successful synthesis of Cr-TPA-4BZ-Py-POP, carbonization and KOH activation procedures were conducted. These crucial steps led to the formation of poly(Cr-TPA-4BZ-Py-POP)-800, a carbon material with a structure akin to graphite. In practical applications, poly(Cr-TPA-4BZ-Py-POP)-800 exhibited a noteworthy CO2 adsorption capacity of 4.4 mmol/g, along with specific capacitance values of 397.2 and 159.2 F g-1 at 0.5 A g-1 (measured in a three-electrode cell) and 1 A g-1 (measured in a symmetric coin cell), respectively. These exceptional dual capabilities stem from the optimal ratio of heteroatom doping. The outstanding performance of poly(Cr-TPA-4BZ-Py-POP)-800 microporous carbon holds significant promise for addressing contemporary energy and environmental challenges, making substantial contributions to both sectors.

3.
Macromol Rapid Commun ; 45(17): e2400263, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878267

ABSTRACT

The Expansion of modern industry underscores the urgent need to address heavy metal pollution, which is a threat to human-health and environment. Efforts are underwent to develop precise technologies for detecting heavy metal ions (M+-ion). One promising approach involves the use of Conjugated Microporous Polymers (CMPs) modified with Triphenylamine (TPA) anderylene (Peryl), known as TPA-Peryl-CMP, which emits strong refluorescence. Various analytical techniques, such as Brunauer-Emmett-Teller analysis, Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA), are utilized to characterize the synthesized TPA-Peryl-CMP and understand its functional properties. In addition to its remarkable fluorescence behavior, TPA-Peryl-CMP shows promise as a sensor for Fe3+ ions using a turn-off strategy. Due to its exceptional stability and robust π-electron system, this platform demonstrates remarkable sensitivity and selectivity, significantly improving detection capabilities for specific analytes. Detailed procedures related to the mechanism for detecting Fe3+ ions are outlined for sensing Fe3+ ions, revealing a notably strong linear correlation within the concentration range of 0-3 µM, with a correlation coefficient of 0.9936 and the Limit of detection (LOD) 20 nM. It is anticipated that development of such a kind of TPA-Peryl-CMP will observe broader applications in detecting various analytes related to environmental and biological systems.


Subject(s)
Fluorescent Dyes , Polymers , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Porosity , Perylene/chemistry , Perylene/analogs & derivatives , Ions/analysis , Ions/chemistry , Aniline Compounds/chemistry , Spectrometry, Fluorescence , Iron/chemistry , Iron/analysis , Molecular Structure
4.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267492

ABSTRACT

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

6.
Mol Biol Rep ; 50(12): 9793-9803, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831346

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN), which is a chronic outcome of diabetes mellitus (DM), usually progresses to end-stage renal disease (ESRD). The DN pathophysiology, nevertheless, is not well-defined. Several miRNAs were reported to be either risk or protective factors in DN. METHODS, AND RESULTS: The present study sought to inspect the potential diagnostic and prognostic value of hsa-miR-221 in DN. The study included 200 participants divided into four groups: Group 1 (50 patients with DN), Group 2 (50 diabetic patients without nephropathy), Group 3 (50 nondiabetic patients with CKD), and Group 4 (50 healthy subjects as a control group). Patients in groups 1 and 3 were further classified based on the presence of macroalbuminuria and microalbuminuria. Hsa-miR-221 expression was measured by RT- qRT-PCR. DN patients had significantly elevated serum hsa-miR-221 levels than the other groups, while diabetic patients without nephropathy exhibited elevated levels compared to both nondiabetic patients with CKD, and the control group. The DN patients with macroalbuminuria revealed significantly higher mean values of hsa-miR-221 relative to the patients with microalbuminuria. Significant positive associations were observed in the DN group between serum hsa-miR-221 and fasting insulin, fasting glucose, HOMA IR, ACR, and BMI. The ROC curve analysis of serum hsa-miR-221 in the initial diagnosis of DN in DM revealed high specificity and sensitivity. CONCLUSIONS: It is concluded that hsa-miR-221 has the potential to be a useful biomarker for prognostic and diagnostic purposes in DN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , MicroRNAs , Renal Insufficiency, Chronic , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/genetics , Prognosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , MicroRNAs/genetics , Biomarkers , Albuminuria/diagnosis
7.
Heliyon ; 9(7): e17977, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539112

ABSTRACT

In this work, a new and effective polymeric coating is used to improve mild steel's corrosion resistance. The coating incorporates a Schiff base moiety into a benzoxazine (BZ) precursor, resulting in improved protection against corrosion. The SF-Tol-BZ polymerization behavior and thermal properties were studied using differential scanning calorimetry (DSC) and thermalgravimetric analysis (TGA), respectively, at different curing temperatures. The poly(SF-Tol-BZ) cured at 240 °C had a Td10 value of 604 °C and a Tg of 225 °C. The efficacy of poly(SF-Tol-BZ) coatings in protecting mild steel (MS) from corrosion in a NaCl (3.5%) solution at room temperature was evaluated using various corrosion measurements, including open circuit potential (OCP), and electrochemical impedance spectroscopy (EIS). The results showed that increasing the poly(SF-Tol-BZ) concentration led to a corresponding increase in its protective efficiency, reaching a maximum of 92% at a concentration of 300 g/L. The coatings also exhibited a 24-fold increase in Rct values and a one-order-of-magnitude reduction in CPE compared to the bare mild steel. Finally, the poly(SF-Tol-BZ) precursors demonstrated a CO2 uptake of 23 mg g-1 (measured at 298 K).

8.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569744

ABSTRACT

This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.


Subject(s)
Carbon Dioxide , Polymers , Metallocenes , Porosity
9.
Heliyon ; 9(5): e15976, 2023 May.
Article in English | MEDLINE | ID: mdl-37215883

ABSTRACT

In this study, we utilized salicylaldehyde (SA) and p-toluidine (Tol-NH2) to synthesize 2-(Z)[(4-methylphenyl)imino]methylphenol (SA-Tol-SF), which was then reduced to 2-[(4-methylphenyl)amino]methylphenol, producing SA-Tol-NH. SA-Tol-NH was further reacted with formaldehyde to create SA-Tol-BZ monomer. Poly(SA-Tol-BZ) was produced by thermally curing it at 210 °C, after synthesizing it from SA-Tol-BZ. The chemical structure of SA-Tol-BZ was analyzed using various analytical techniques such as FT-IR, 1H NMR spectroscopy, and 13C NMR spectroscopy TGA, SEM, DSC, and X-ray analyses. Afterward, we applied the obtained poly(SA-Tol-BZ) onto mild steel (MS) using thermal curing and spray coating techniques. To examine the anticorrosion attributes of MS coated with poly(SA-Tol-BZ), electrochemical characterization was employed. The study proved that poly(SA-Tol-BZ) coating had a high level of effectiveness in preventing corrosion on MS, with an efficacy of 96.52%, and also exhibited hydrophobic properties.

10.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240313

ABSTRACT

In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g-1 and better capacitance stability of 97% over 5000 cycles at 10 A g-1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.


Subject(s)
Amines , Polymers , Polymers/chemistry , Adsorption , Anthracenes
11.
Polymers (Basel) ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37112038

ABSTRACT

Porous organic polymers (POPs) have plenteous exciting features due to their attractive combination of microporosity with π-conjugation. Nevertheless, electrodes based on their pristine forms suffer from severe poverty of electrical conductivity, precluding their employment within electrochemical appliances. The electrical conductivity of POPs may be significantly improved and their porosity properties could be further customized by direct carbonization. In this study, we successfully prepared a microporous carbon material (Py-PDT POP-600) by the carbonization of Py-PDT POP, which was designed using a condensation reaction between 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PDA-4NH2) and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-4CHO) in the presence of dimethyl sulfoxide (DMSO) as a solvent. The obtained Py-PDT POP-600 with a high nitrogen content had a high surface area (up to 314 m2 g-1), high pore volume, and good thermal stability based on N2 adsorption/desorption data and a thermogravimetric analysis (TGA). Owing to the good surface area, the as-prepared Py-PDT POP-600 showed excellent performance in CO2 uptake (2.7 mmol g-1 at 298 K) and a high specific capacitance of 550 F g-1 at 0.5 A g-1 compared with the pristine Py-PDT POP (0.24 mmol g-1 and 28 F g-1).

12.
Molecules ; 28(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049996

ABSTRACT

We have successfully synthesized two types of two-dimensional conjugated microporous polymers (CMPs), Py-BSU and TBN-BSU CMPs, by using the Sonogashira cross-coupling reaction of BSU-Br2 (2,8-Dibromothianthrene-5,5',10,10'-Tetraoxide) with Py-T (1,3,6,8-Tetraethynylpyrene) and TBN-T (2,7,10,15-Tetraethynyldibenzo[g,p]chrysene), respectively. We characterized the chemical structure, morphology, physical properties, and potential applications of these materials using various analytical instruments. Both Py-BSU and TBN-BSU CMPs showed high thermal stability with thermal decomposition temperatures (Td10) up to 371 °C and char yields close to 48 wt%, as determined by thermogravimetric analysis (TGA). TBN-BSU CMPs exhibited a higher specific surface area and porosity of 391 m2 g-1 and 0.30 cm3 g-1, respectively, due to their large micropore and mesopore structure. These CMPs with extended π-conjugated frameworks and high surface areas are promising organic electroactive materials that can be used as electrode materials for supercapacitors (SCs) and gas adsorption. Our experimental results demonstrated that the TBN-BSU CMP electrode had better electrochemical characteristics with a longer discharge time course and a specific capacitance of 70 F g-1. Additionally, the electrode exhibited an excellent capacitance retention rate of 99.9% in the 2000-cycle stability test. The CO2 uptake capacity of TBN-BSU CMP and Py-BSU CMP were 1.60 and 1.45 mmol g-1, respectively, at 298 K and 1 bar. These results indicate that the BSU-based CMPs synthesized in this study have potential applications in electrical testing and CO2 capture.

13.
Macromol Rapid Commun ; 44(10): e2200910, 2023 May.
Article in English | MEDLINE | ID: mdl-37017474

ABSTRACT

This work synthesizes a new bifunctional furan derivative (PDMS-FBZ) through a sequence of hydrosilylation of nadic anhydride (ND) with polydimethylsiloxane (PDMS), reaction of the product with p-aminophenol to form PDMS-ND-OH, and its subsequent Mannich reaction with furfurylamine and CH2 O. Then, the main chain-type copolymer PDMS-DABZ-DDSQ is prepared through a Diels-Alder (DA) cycloaddition of PDMS-FBZ with the bismaleimide-functionalized double-decker silsesquioxane derivative DDSQ-BMI. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirm the structure of this PDMS-DABZ-DDSQ copolymer; differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) reveal it to have high flexibility and high thermal stability (Tg = 177 °C; Td10 = 441 °C; char yield = 60.1 wt%); contact angle measurements reveal a low surface free energy (18.18 mJ m-2 ) after thermal ring-opening polymerization, because the inorganic PDMS and DDSQ units are dispersed well, as revealed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This PDMS-DABZ-DDSQ copolymer possesses reversible properties arising from the DA and retro-DA reactions, suggesting its possible application as a functional high-performance material.


Subject(s)
Benzoxazines , Polymers , Cycloaddition Reaction , Benzoxazines/chemistry , Polymers/chemistry , Microscopy, Electron, Scanning , Dimethylpolysiloxanes
14.
Sci Rep ; 13(1): 5581, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37019919

ABSTRACT

In this study, 2-[(E)-(hexylimino)methyl] phenol (SA-Hex-SF) was synthesized by adding salicylaldehyde (SA) and n-hexylamine (Hex-NH2), which was subsequently reduced by sodium borohydride to produce 2-[(hexylamino)methyl] phenol (SA-Hex-NH). Finally, the SA-Hex-NH reacted with formaldehyde to give a benzoxazine monomer (SA-Hex-BZ). Then, the monomer was thermally polymerized at 210 °C to produce the poly(SA-Hex-BZ). The chemical composition of SA-Hex-BZ was examined using FT-IR, 1H, and 13C NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray Diffraction (XRD), respectively, were used to examine the thermal behavior, surface morphology, and crystallinity of the SA-Hex-BZ and its PBZ polymer. Mild steel (MS) was coated by poly(SA-Hex-BZ) which was quickly prepared using spray coating and thermal curing techniques (MS). Finally, the electrochemical tests were used to evaluate the poly(SA-Hex-BZ)-coating on MS as anti-corrosion capabilities. According to this study, the poly(SA-Hex-BZ) coating was hydrophobic, and corrosion efficiency reached 91.7%.

15.
Polymers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904335

ABSTRACT

This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1'-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g-1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g-1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics.

16.
Chemistry ; 29(30): e202300538, 2023 May 26.
Article in English | MEDLINE | ID: mdl-36932999

ABSTRACT

Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.

17.
Polymers (Basel) ; 15(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679213

ABSTRACT

This study synthesized two azide-functionalized monomers through p-dichloro xylene and double-decker silsesquioxane (DDSQ) units with NaN3 to form DB-N3 and DDSQ-N3 monomers, respectively. In addition, five different propargyl-functionalized monomers were also prepared from hydroquinone, bisphenol A, bis(4-hydroxyphenyl)methanone, 2,4-dihydroxybenzaldehyde (then reacted with hydrazine hydrate solution) and 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethene with propargyl bromide to form P-B, P-BPA, P-CO, P-NP, and P-TPE monomers, respectively. As a result, various DDSQ-based main chain copolymers could be synthesized using Cu(I)-catalyzed click polymerization through DDSQ-N3 with different propargyl-functionalized monomers, of which the chemical structure and molecular weight could be confirmed by using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) analyses. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy analyses also could characterize the thermal stability, morphology, and optical behaviors of these DDSQ-based copolymers. All results indicate that the incorporation of an inorganic DDSQ cage could improve the thermal stability such as thermal decomposition temperature and char yield, because of the DDSQ dispersion homogeneously in the copolymer matrix, and this would then affect the optical properties of NP and TPE units in this work.

18.
Polymers (Basel) ; 14(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36433051

ABSTRACT

Living creatures involve several defense mechanisms, such as protecting enzymes to protect organs and cells from the invasion of free radicals. Developing antioxidant molecules and delivery systems to working with enzymes is vital. In this study, a supramolecular polymer PNI-U-DPy was used to encapsulate C60, a well-known antioxidant that is hard to dissolve or disperse in the aqueous media. PNI-U-DPy exhibits characteristics similar to PNIPAM but could form micelles even when the environment temperature is lower than its LCST. The U-DPy moieties could utilize their strong complementary hydrogen bonding-interaction to create a physically crosslinked network within PNIPAM micelles, thus adjusting its LCST to a value near the physiological temperature. Morphological studies suggested that C60 could be effectively loaded into PNI-U-DPy micelles with a high loading capacity (29.12%), and the resulting complex PNI-C60 is stable and remains temperature responsive. A series of measurements under variable temperatures was carried out and showed that a controlled release process proceeded. Furthermore, PNI-C60 exhibits hydroxyl radicals scavenging abilities at a low dosage and could even be adjusted by temperature. It can be admitted that the micelle system can be a valuable alternative for radical scavengers and may be delivered to the desired position with good dispersibility and thermo-responsivity. It is beneficial to the search progress of scientists for drug delivery systems for chemotherapeutic treatments and biomedical applications.

19.
Chem Commun (Camb) ; 58(88): 12317-12320, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36254831

ABSTRACT

We conducted Passerini-type multicomponent polymerizations (P-MCPs) with various monomers and afforded a series of functional poly(carbamoyl ester)s (PCEs). We demonstrated an efficient, diverse, and facile approach through P-MCPs to produce these novel PCEs with dual-cleavable linkages of ester and disulfide groups and the aggregation-induced emission (AIE) luminogen tetraphenylethylene (TPE).


Subject(s)
Nanoparticles , Polymers , Polymerization , Esters
20.
Molecules ; 27(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234775

ABSTRACT

In this study, we synthesized three hybrid microporous polymers through Heck couplings of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining the porous organic-inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively. Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the POSS-Th POIP possessed the highest thermal stability (T5: 586 °C; T10: 785 °C; char yield: 90 wt%), presumably because of a strongly crosslinked network formed between its OVS and Th moieties. Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g-1) at 0.5 A g-1 was higher than those of the POSS-Th (213 F g-1) and POSS-OXD (119 F g-1) POIPs. We attribute the superior electrochemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich phenyl groups within its structure.

SELECTION OF CITATIONS
SEARCH DETAIL