Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34579458

ABSTRACT

Sweet pepperincludes several vitamins and is regarded as a great source of bioactive nutrients, such as carotenoids and phenolic compounds, for human growth and activities. This work aimed to investigate the effects of the soil addition of growth stimulants, namely, effective microorganisms (EM), compost tea, fulvic acid, and yeast extract, and foliar applications of seaweed extract, on the vegetative growth, enzyme activity, phytohormones content, chemical constituents of plant foliage, fruit yield, and fruit quality of sweet pepper plants (Capsicum annuum L. cv. Zidenka) growing under greenhouse conditions. The results showed that the tallest plant, largest leaf area/plant, and heaviest plant fresh and dry weights were recorded after combining a soil addition of yeast extract and foliar spray with seaweed extracts at 3 g/L in two growing seasons. The highest number of fruit/plant, fruit yield/m2, fruit values of vitamin C (VC), total sugars, total soluble solids (TSS), and carotenoids, along with the highest leaf of cytokines, P, K, Fe, and total carbohydrates values, were obtained using a soil addition of fulvic acid and spray with seaweed extract at 3 g/L in the two seasons of study. These treatments also provided the lowest abscisic acid, peroxidase, and super oxidase dismutase values in the same conditions. Sweet pepper plants supplemented with compost tea and seaweed extract foliar spray at 3 g/L were the most promising for inducing the highest values of fruit fresh and dry weights, fruit length and diameter, and the leavesrichest in N, Zn, and Mn; inversely, it induced the lowest catalase levels in both seasons. The applications of EM, yeast extract, and seaweed extract could be applied for high growth, mineral levels, enzymatic activity, fruit yield, and nutritional value of sweet pepper fruit and minimizing environmental pollution.

2.
Plant Physiol Biochem ; 167: 309-320, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34392044

ABSTRACT

Photosynthesis is a fundamental biosynthetic process in plants that can enhance carbon absorption and increase crop productivity. Heat stress severely inhibits photosynthetic efficiency. Melatonin is a bio-stimulator capable of regulating diverse abiotic stress tolerances. However, the underlying mechanisms of melatonin-mediated photosynthesis in plants exposed to heat stress largely remain elucidated. Our results revealed that melatonin treatment (100 µM) in tomato seedlings increased the endogenous melatonin levels and photosynthetic pigment content along with upregulated of their biosynthesis gene expression under high-temperature stress (42 °C for 24 h), whereas heat stress significantly decreased the values of gas exchange parameters. Under heat stress, melatonin boosted CO2 assimilation, i.e., Vc,max (maximum rate of ribulose-1,5-bisphosphate carboxylase, Rubisco), and Jmax (electron transport of Rubisco generation) and also enhanced the Rubisco and FBPase activities, which resulted in upregulated photosynthetic related gene expression. In addition, heat stress greatly reduced the photochemical chemistry of photosystem II (PSII) and photosystem I (PSI), particularly the maximum quantum efficiency of PSII (Fv/Fm) and PSI (Pm). Conversely, melatonin supplementation increased the chlorophyll a fluorescence parameters led to amplifying the electron transport efficiency. Moreover, heat stress decreased the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while increasing nonphotochemical quenching (NPQ); however, melatonin reversed these values, which helps to fostering the dissipation of excess excitation energy. Taken together, our results provide a concrete insight into the efficacy of melatonin-mediated photosynthesis performance in a high-temperature regime.


Subject(s)
Melatonin , Solanum lycopersicum , Chlorophyll , Chlorophyll A , Solanum lycopersicum/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Seedlings/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...