Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21801, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38065998

ABSTRACT

This study aimed to assess the impact of spirulina and/or canthaxanthin-enriched Artemia on the goldfish (Carassius auratus) growth, pigmentation, blood analysis, immunity, intestine and liver histomorphology, and expression of somatolactin (SL) and growth hormone (GH) genes. Artemia was enriched with spirulina and/or canthaxanthin for 24 h. Goldfish (N = 225, 1.10 ± 0.02 g) were tested in five experimental treatments, three replicates each: (T1) fish fed a commercial diet; (T2) fish fed a commercial diet and un-enriched Artemia (UEA); (T3) fish fed a commercial diet and spirulina-enriched Artemia (SEA); (T4) fish fed a commercial diet and canthaxanthin-enriched Artemia (CEA); and (T5) fish fed a commercial diet and spirulina and canthaxanthin-enriched Artemia (SCA) for 90 days. The results showed that the use of spirulina and/or canthaxanthin increased performance, ß-carotene content and polyunsaturated fatty acids of Artemia. For goldfish, T5 showed the highest growth performance, ß-carotene concentration and the lowest chromatic deformity. T5 also showed improved hematology profile, serum biochemical, and immunological parameters. Histomorphology of the intestine revealed an increase in villi length and goblet cells number in the anterior and middle intestine, with normal liver structure in T5. SL and GH gene expression in the liver and brain differed significantly among treatments with a significant increase in enriched Artemia treatments compared to T1 and T2. In conclusion, the use of spirulina and/or canthaxanthin improved performance of Artemia. Feeding goldfish spirulina and/or canthaxanthin-enriched Artemia improved performance, ß-carotene content, pigmentation, health status and immune-physiological response.


Subject(s)
Artemia , Goldfish , Animals , Artemia/genetics , beta Carotene , Canthaxanthin , Diet , Pigmentation , Gene Expression Profiling
2.
Sci Rep ; 13(1): 7712, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173388

ABSTRACT

Aeromonas hydrophila is a ubiquitous fish pathogen and an opportunistic human pathogen. It is mostly found in aquatic habitats, but it has also been isolated from food and bottled mineral waters. It causes hemorrhagic septicemia, ulcerative disease, and motile Aeromonas septicemia (MAS) in fish and other aquatic animals. Moreover, it might cause gastroenteritis, wound infections, and septicemia in humans. Different variables influence A. hydrophila virulence, including the virulence genes expressed, host susceptibility, and environmental stresses. The identification of virulence factors for a bacterial pathogen will help in the development of preventive and control measures. 95 Aeromonas spp. genomes were examined in the current study, and 53 strains were determined to be valid A. hydrophila. These genomes were examined for pan- and core-genomes using a comparative genomics technique. A. hydrophila has an open pan-genome with 18,306 total genes and 1620 genes in its core-genome. In the pan-genome, 312 virulence genes have been detected. The effector delivery system category had the largest number of virulence genes (87), followed by immunological modulation and motility genes (69 and 46, respectively). This provides new insight into the pathogenicity of A. hydrophila. In the pan-genome, a few distinctive single-nucleotide polymorphisms (SNPs) have been identified in four genes, namely: D-glycero-beta-D-manno-heptose-1,7-bisphosphate 7-phosphatase, chemoreceptor glutamine deamidase, Spermidine N (1)-acetyltransferase, and maleylpyruvate isomerase, which are present in all A. hydrophila genomes, which make them molecular marker candidates for precise identification of A. hydrophila. Therefore, for precise diagnostic and discrimination results, we suggest these genes be considered when designing primers and probes for sequencing, multiplex-PCR, or real-time PCR.


Subject(s)
Aeromonas , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Humans , Aeromonas hydrophila , Virulence/genetics , Polymorphism, Single Nucleotide , Virulence Factors/genetics , Fishes , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology
3.
Metabolites ; 13(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36837781

ABSTRACT

Cancer is the leading cause of death globally, with an increasing number of cases being annually reported. Nature-derived metabolites have been widely studied for their potential programmed necrosis, cytotoxicity, and anti-proliferation leading to enrichment for the modern medicine, particularly within the last couple of decades. At a more rapid pace, the concept of multi-target agents has evolved from being an innovative approach into a regular drug development procedure for hampering the multi-fashioned pathophysiology and high-resistance nature of cancer cells. With the advent of the Red Sea Penicillium chrysogenum strain S003-isolated indole-based alkaloids, we thoroughly investigated the molecular aspects for three major metabolites: meleagrin (MEL), roquefortine C (ROC), and isoroquefortine C (ISO) against three cancer-associated biological targets Cdc-25A, PTP-1B, and c-Met kinase. The study presented, for the first time, the detailed molecular insights and near-physiological affinity for these marine indole alkaloids against the assign targets through molecular docking-coupled all-atom dynamic simulation analysis. Findings highlighted the superiority of MEL's binding affinity/stability being quite in concordance with the in vitro anticancer activity profile conducted via sulforhodamine B bioassay on different cancerous cell lines reaching down to low micromolar or even nanomolar potencies. The advent of lengthy structural topologies via the metabolites' extended tetracyclic cores and aromatic imidazole arm permitted multi-pocket accommodation addressing the selectivity concerns. Additionally, the presence decorating polar functionalities on the core hydrophobic tetracyclic ring contributed compound's pharmacodynamic preferentiality. Introducing ionizable functionality with more lipophilic characters was highlighted to improve binding affinities which was also in concordance with the conducted drug-likeness/pharmacokinetic profiling for obtaining a balanced pharmacokinetic/dynamic profile. Our study adds to the knowledge regarding drug development and optimization of marine-isolated indole-based alkaloids for future iterative synthesis and pre-clinical investigations as multi-target anticancer agents.

4.
Fish Shellfish Immunol ; 128: 123-135, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35921936

ABSTRACT

Acute ammonia toxicity suppresses the immune function and enhances the inflammatory pathways in Nile tilapia. The aim of this study was to compare the effect of Bacillus strains probiotic mixture (BS) or Yucca shidigera liquid extract (YSE) alone or their combination in water treatment and in reliving toxicity of an acute ammonia exposure in Nile tilapia through the assessment of fish immune response, inflammatory pathway, oxidative stress response with respect to the histopathological changes, gene expression, enzymes levels and phagocytosis. Five groups were used; the 1st and 2nd groups fed the basal diet; the 3rd group fed basal diet with BS in water, 4th group fed basal diet and supplemented with YSE in water and 5th group received a combination of BS and YSE. After two weeks of treatments, the 2nd, 3rd, 4th, and the 5th groups were exposed to acute ammonia challenge for 72 h. Fish exposed to ammonia displayed significant decreases in RBCs, Hb, PCV, WBCs, phagocytic activity (PA) and index (PI), lysozyme activities and serum antioxidant enzymes (glutathione peroxidase (GPX) and catalase (CAT)). Also, a significant increase in Malondialdehyde (MDA), degenerative changes in the gills, hepatopancrease and spleen associated with an elevated un-ionized ammonia level. A significant restoration of the hematological parameters was observed with the use of BS, YSE or their combination. Additionally, they improved the innate immunity, antioxidant responses, and histopathological changes. At transcriptomic level, ammonia toxicity significantly lowered the mRNA transcription levels of Nuclear erythroid 2-related factor 2 (Nrf2), quinone oxidoreductase 1 (NQO-1), Heme oxygenase 1 (HO-1) and Heat shock proteins (HSP70). While nuclear factor kappa ß (NFкß), Tumor necrosis factor α (TNF-α), Interleukin 1ß (IL-1ß), and Interleukin 8 (IL8), transcription levels were increased. Interestingly, BS and YSE and their combination significantly increased the expression of these genes with the highest levels reported with BS and YSE combination. We observed that, the most pronounced restoration of some important inflammatory and immune related genes close to the control level was observed when BS-YSE mix was used. Furthermore, a restored water pH, and a maintained ammonia level to the control level were observed in this group. Otherwise, equal effects for the three treatments were observed on the assessed parameters. We recommend the used of BS-YSE mix for water ammonia treatment and relieving ammonia toxicity in fish.


Subject(s)
Bacillus , Cichlids , Yucca , Ammonia/metabolism , Animal Feed/analysis , Animals , Antioxidants/metabolism , Bacillus/genetics , Catalase/metabolism , Glutathione Peroxidase/metabolism , Heat-Shock Proteins/metabolism , Heme Oxygenase-1/metabolism , Immunity, Innate , Interleukin-1beta/metabolism , Interleukin-8 , Malondialdehyde/metabolism , Muramidase/metabolism , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Quinones/metabolism , Quinones/pharmacology , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism , Water Quality
5.
Front Vet Sci ; 9: 918933, 2022.
Article in English | MEDLINE | ID: mdl-35812877

ABSTRACT

This study aimed to detect the impact of Moringa oleifera leaf powder dietary inclusion on the antioxidant and innate immune responses of mono-sex Nile tilapia fingerlings. A total of 180 fingerlings were allocated in a random method into three groups with triplicate each. One group (1st group) received the control diet (basal diet (BD) free of moringa) and the other groups (2nd and 3rd) fed BD containing M. oleifera leaf powder at 5 and 10% of the diet, respectively. After 6 weeks of feeding, fish were randomly redistributed into four replicates and rested for 24 h. Then, each fish in the first two replicates was injected with 0.2 mL of PBS, while the others were injected with 0.2 mL of A. hydrophila suspension (1.8 × 106 CFU/mL). Healthy fish fed on M. oleifera leaf powder showed enhanced immune response manifested by significant increases in phagocytic and lysozyme activities with a marked H/L ratio (P < 0.05). In addition, significant alterations of the lymphocytic and heterophilic population in circulation with increasing infiltration in tissue such as the spleen were noticed. Also, M. oleifera significantly upregulated the antioxidants, CAT and GPx, proinflammatory cytokines, IL1-ß, IL-8, and IFN-γ relative mRNA levels. On the other hand, following A. hydrophila challenging conditions, M. oleifera caused downregulations of IL1-ß, IL-8, and IFN-γ transcription levels, and also lowered the CAT and GPx mRNA levels. In addition, a marked reduction of leukocytic infiltration plus a significant improvement of the degenerative changes in intestinal architecture has occurred. So, M. oleifera leaf powder can be included in the fish diet to enhance immune response under normal health conditions and lower the infection-associated inflammatory response.

6.
Biol Trace Elem Res ; 200(9): 4126-4141, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35040035

ABSTRACT

Zinc is an essential element for metabolism of Nile tilapia (Oreochromis niloticus). Nanomaterials have important benefits in aquaculture. The present study evaluated the effects of green-synthesized zinc oxide nanoparticles (ZnO-NPs) using Ulva fasciata extract as an anti-fungal agent against Candida albicans (C. albicans) in vitro and in vivo in O. niloticus. A total of 252 apparent healthy O. niloticus (20 ± 0.457 g/fish) were randomly allocated into six groups: The 1st group fed on basal diet contaminated with C. albicans 15 × l06 CFU/g diet, the 2nd group fed basal diet only, the 3rd and 5th groups fed the basal diet supplemented with 40 or 60 mg/kg ZnO-NPs, respectively, and the 4th and 6th groups fed the basal diet contaminated with C. albicans 15 × l06 CFU/g and concomitantly supplemented with 40 or 60 mg/kg ZnO-NPs, respectively. The experiment lasted for 8 weeks. The phyco-synthesized ZnO-NPs were characterized by XRD, UV-V, FTIR, TEM, and zeta potential. The anti-fungal activities of ZnO-NPs and the morphological changes to C. albicans cell due to ZnO-NPs were detected. The results revealed that dietary supplementation with the green-synthesized ZnO-NPs significantly improved the growth performance, survival, serum lysozyme activity, phagocytic activity, phagocytic index, respiratory burst activity, expression of immune-related genes (IL-1ß, TGF, TNF-α), digestive enzyme activity, and histopathological finding in C. albicans-infected group, with a relative superiority to 40 mg/kg feed ZnO-NPs. It could be concluded that supplementing diets with 40 mg/kg of phyco-synthesized ZnO-NPs could be considered a better choice for controlling candidiasis in Nile tilapia.


Subject(s)
Candidiasis , Cichlids , Nanoparticles , Zinc Oxide , Animal Feed/analysis , Animals , Candidiasis/drug therapy , Candidiasis/prevention & control , Diet , Dietary Supplements , Disease Resistance , Zinc Oxide/pharmacology
7.
Biol Trace Elem Res ; 200(1): 364-374, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33569732

ABSTRACT

This study was aimed to investigate the synergistic effects of selenium (Se-NP) and zinc oxide (ZnO-NP) nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Monosex Nile tilapia (12.50 ± 1.03 g, N= 180) were randomly allocated into 4 groups in triplicates. Fish were fed diet supplemented with 0 Se-NP and Zn-NP (control group, CG), while fish in the other experimental groups were fed diet supplemented with 1 mg/kg diet Se-NP (Se-NP group), 10 mg/kg diet ZnO-NP (Zn-NP group), and a mixture of 1 and 10 mg/kg diet Se-NP and Zn-NP, respectively (Se/Zn-NP group) for 60 days. Fish fed diet containing Se-NP, Zn-NP, and Se/Zn-NP showed higher final body weight, weight gain, weight gain rate, specific growth rate, and lower feed conversion ratio with respect to CG (P<0.05) with the highest being in fish fed with Se/Zn-NP. Fish fed with Se/Zn-NP showed higher hemoglobin, red blood cells, and globulin (P<0.05). The highest phagocytic activity, phagocytic index, lysozyme activity, and immunoglobulin M was recorded in fish that received Se/Zn-NP followed by Se-NP, Zn-NP, and the lowest in CG (P<0.05). Fish that received diet supplemented with Se-NP, Zn-NP, and Se/Zn-NP significantly (P<0.05) increased superoxide dismutase and catalase while reduced malonaldehyde activity compared to CG. Intestinal morphometry revealed significantly (P<0.05) increased villi length and goblet cells number in fish fed with Se-NP and/or Zn-NP. In conclusion, dietary supplementation of Nile tilapia with Se-NP and Zn-NP induces synergistic effects that improve growth performance, blood health, and intestinal histomorphology.


Subject(s)
Cichlids , Nanoparticles , Selenium , Zinc Oxide , Animal Feed/analysis , Animals , Diet , Dietary Supplements , Oxidative Stress , Selenium/pharmacology , Zinc Oxide/pharmacology
9.
Mar Drugs ; 19(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806929

ABSTRACT

This study was aimed to evaluate the efficiency of Sargassumpolycystum and nucleotides- supplemented diets to improve immune response and cold-tolerance of juvenile Litopenaeus vannamei. Four treatments were evaluated: T1, the control, shrimp received only a basal diet; T2, a basal diet with 500 ppm nucleotides; T3, a basal diet with 500 ppm S.polycystum powdered; T4, a basal diet with 500 ppm nucleotides and 500 ppm S.polycystum powdered. Shrimp were fed experimental diets for 56 days. Results revealed shrimp fed T4 diet exhibited the best significant improvement in water quality, survival, growth, and feed utilization indices followed by T2, and T3, while T1 showed the worst values. Additionally, nonspecific immune responses (phagocytosis (%), lysozyme, phenoloxidase, super oxide dismutase (SOD) activity, total nitric oxide) were improved with 1.7-3.2-fold in T4 higher than T1. Histomorphology of hepatopancreas in T4 showed the most increased activation of the hepatic glandular duct system compared with the other treatments. Moreover, nucleotides/seaweed-supplemented diets upregulated relative expression of cMnSOD, Penaeidin4, and heat shock protein70 (HSP70) genes, while translationally controlled tumor protein (TCTP) was downregulated. In conclusion, the synergistic effects of both S. polycystum and nucleotides have many advantages as a growth promoter, immunostimulant, antimicrobial, and cold-tolerant stimulant to L. vannamei.


Subject(s)
Cold Temperature , Dietary Supplements , Nucleotides/administration & dosage , Penaeidae/physiology , Sargassum , Seasons , Seaweed , Shellfish , Acclimatization , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Aquaculture , Gene Expression Regulation , Nutritional Status , Nutritive Value , Penaeidae/genetics , Penaeidae/growth & development , Time Factors
10.
Environ Monit Assess ; 192(12): 779, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33230706

ABSTRACT

The remediation of wastewater (WW) is a promising solution for limited water sources. This study aimed to evaluate rice straw (RS) and zeolite (Z) as bioadsorbents for the removal of pollutants, including heavy metals (HMs) (cadmium [Cd], nickel [Ni], and lead [Pb]) and malathion (PC), from WW and to assess the suitability of reusing remediated WW in fish rearing units. A total of 11 treatment groups with 3 replicates each were designed with different combinations of RS and/or Z for the treatment of real WW contaminated with HMs and malathion, where the WW remained in contact with the adsorbents for 24 h. Different remediated WWs were used for rearing Nile tilapia (Oreochromis niloticus), which were randomly allocated into 33 glass aquaria representing 11 treatments with 3 replicates each for 30 days. The best remediation efficiency was achieved using a mixture of whole RS (WRS), chopped RS (CRS), and Z (HM-PC-WRS-CRS-Z group), with removal percentages of 92%, 95%, 96%, and 99% for Cd, Ni, Pb, and malathion, respectively. The health status of the aquatic ecosystems was assessed through blood tests to characterize biochemical parameters and through pathological changes of cultured O. niloticus reared in treated WW. A significant (P Ë‚ 0.05) effect on the blood biochemistry of fish reared in treated WW was found and better biochemical and histologic architecture was observed than that of fish reared in untreated WW. A novel mixture of WRS, CRS, and Z could possibly be a promising low-cost adsorbent for wastewater treatment. Graphical abstract.


Subject(s)
Cichlids , Metals, Heavy , Oryza , Pesticides , Water Pollutants, Chemical , Zeolites , Animals , Ecosystem , Environmental Monitoring , Metals, Heavy/analysis , Wastewater , Water Pollutants, Chemical/analysis
11.
Biol Trace Elem Res ; 198(2): 661-668, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32157633

ABSTRACT

The present investigation aimed to evaluate the influence of selenium nanoparticles (Se-NPs) or/and spirulina (SP) on the growth, immunity, and oxidation resistance of Nile tilapia. Four groups of fish fed diets with Se-NPs or/and SP at 0 g (control), 1 g SP/kg diet (SP), 1 mg Se-NPs/kg diet (Se-NPs), and 1 g SP + 1 mg Se-NPs/kg diet (SP/Se-NPs) for 60 days. Fish fed Se-NPs or/and SP displayed significantly improved weight gain (WG) and decreased feed conversion ratio (P < 0.05). The highest WG has observed in fish fed both Se-NPs and SP, while the specific growth rate was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Blood albumin was increased significantly with Se-NPs with regard to the control (P < 0.05), while there were no significant differences between fish fed Se-NPs or/and SP. Blood total protein also was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Further, blood immunoglobulin M was increased by feeding both Se-NPs and SP (P < 0.05), while the differences were insignificantly differing with fish fed only Se-NPs (P > 0.05). The transcription of liver superoxide dismutase (SOD) and tumor necrosis factor-alpha (TNF-α) genes was upregulated significantly by Se-NPs or/and SP (P < 0.05). Interestingly, TNF-α was significantly upregulated by SP when compared to those fed Se-NPs only or both Se-NPs and SP. However, heat shock protein 70 (HSP70) gene transcription was downregulated by Se-NPs or/and SP (P < 0.05). Based on the measured parameters, the mixture of both Se-NPs and SP is highly recommended for the welfare of Nile tilapia.


Subject(s)
Cichlids , Nanoparticles , Selenium , Spirulina , Animal Feed/analysis , Animals , Cichlids/genetics , Diet/veterinary , Dietary Supplements , Heat-Shock Proteins/genetics , Selenium/pharmacology
12.
Sci Total Environ ; 649: 1237-1249, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30308894

ABSTRACT

Burullus lagoon is the second largest lake in Egypt. However, there has never been a comprehensive survey which studied nineteen potentially toxic elements in sediments and plants and evaluated the associated potential risk. Thus, we aimed to study the total and potentially available content of As, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Sb, Se, Sn, Tl, V, and Zn in the sediments and common reed (Phragmites australis) at thirty two sites along the entire lagoon and connected drains. Contamination Factor (CF), Pollution Load Index (PLI), Geo-accumulation Index (Igeo), and Enrichment Factor (EF) were calculated to assess the grade of contamination. Element accumulation factor (AF) and bio-concentration ratio (BCR) were also calculated. Aluminum showed the highest median (mg kg-1) total content (41,200), followed by Fe (30,300), Mn (704.7), V (82.0), Zn (75.5), Cr (51.2), Cu (47.8), Ni (44.3), As (31.9), Tl (24.6), Co (21.4), Se (20.3), Sb (17.6), Sn (15.6), Mo (11.3), and Hg (16.6 µg kg-1). Values of the EF, CF, and Igeo showed that the sediments were heavily contaminated with As, Sb, Se, Tl, Mo, Sn, Co, Ni, and Cu. The drained sediment had significantly higher values of total and potentially available element content than the lagoon sediments. Sediments of the middle and western area showed significantly higher contents of total and available elements than the eastern section. The BCR and AF values indicate that the studied plant is efficient in taking up high amounts of Zn, Fe, As, Sn, Tl, Ni, Mo, Mn; then Co, Cu, and V. The results exhibit a dramatic contamination at certain sites of the lagoon, and the studied PTEs have a predominant role in contamination-related ecological risk. Further investigations concerning redox-induced mobilization of PTEs in sediments, the risk of fish contamination and the potential health hazards are highly recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...